微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗21闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻鐔兼⒒鐎靛壊妲紒鐐劤椤兘寮婚敐澶婄疀妞ゆ帊鐒﹂崕鎾绘⒑閹肩偛濡奸柛濠傛健瀵鈽夐姀鈺傛櫇闂佹寧绻傚Λ娑⑺囬妷褏纾藉ù锝呮惈灏忛梺鍛婎殕婵炲﹤顕f繝姘亜闁惧繐婀遍敍婊堟⒑闂堟稓绠冲┑顔炬暬閹﹢宕奸姀銏紲闂佺粯鍔﹂崜娆撳礉閵堝棎浜滄い鎾跺Т閸樺鈧鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�
首页 > 微波射频 > 微波器件设计 > TPMS硬件设计可靠性研究

TPMS硬件设计可靠性研究

时间:11-13 来源:mwrf 点击:

据美国汽车工程师学会的调查,美国每年有26万交通事故是由于轮胎气压低或渗漏造车的,另外,每年75%的轮胎故障是由于轮胎渗漏或充气不足引起的。根据我国有关部门的统计,高速公路46%的交通事故是由于轮胎发生故障引起的,其中爆胎一项就占事故总量的70%。同时,随着我国社会经济水平和汽车工业的发展,我国的汽车产销量正逐年提高。根据中国汽车协会的统计,2010年中国汽车产量达到18 264 667辆,同比增加32.44%,而且我国的汽车总量在下个10年还会保持高速增长。因此怎样减少交通事故,最大限度地减少由于轮胎爆胎而引发的交通事故,尤其是防范由此引发的群死群伤事故,已成为社会各界共同关心的课题。轮胎爆胎监测系统能实时监测各个轮胎的压力和温度等数据,对轮胎漏气、气压过高、过低或温度过高进行报警。其工作可有效减少汽车爆胎事故的发生,是汽车安全行驶的有效保证。

1 系统介绍

目前已经面世的轮胎爆胎预警系统可分为两大类型:一种是间接式,另一种是直接式。间接式主要通过汽车ABS系统的轮速传感器来比较轮胎之间的转速差别,从而间接测量轮胎气压,因准确性较差,现在已逐步淡出市场。直接式主要利用安装在每一个轮胎里面的压力、温度传感器来直接测量轮胎气压和温度,然后通过射频无线通信的方式与装在驾驶室的控制主机通信,主机显示各个轮胎相关信息或进行压力、温度报警,其工作原理如图1所示。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂備線娼уΛ娆戞暜閹烘缍栨繝闈涱儐閺呮煡鏌涘☉鍗炲妞ゃ儲鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊╂倻閽樺锛涘┑鐐村灍閹崇偤宕堕浣镐缓缂備礁顑呴悘婵嬫倵椤撶喍绻嗛柕鍫濈箳閸掍即鏌涢悤浣镐簽缂侇喛顕ч埥澶娢熻箛鎾剁Ш闁轰焦鍔欏畷銊╊敊鐠侯煈鏀ㄧ紓鍌氬€风粈渚€顢栭崟顖涘殑闁告挷鐒﹂~鏇㈡煙閹规劦鍤欑痪鎯у悑閹便劌顫滈崱妤€骞嬮梺绋款儐閹瑰洭骞冨⿰鍫熷殟闁靛鍎崑鎾诲锤濡や胶鍙嗛梺鍝勬处濮樸劑宕濆澶嬬厵闁告劘灏欓悞鍛婃叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭闂傚倷娴囧畷鐢稿窗閸℃稑纾块柟鎯版缁犳煡鏌曡箛鏇烆€屾繛绗哄姂閺屽秷顧侀柛鎾寸懇椤㈡岸鏁愰崱娆戠槇濠殿喗锕╅崢鍏肩濠婂懐纾奸柣鎰靛墮椤庢粌顪冪€涙ɑ鍊愮€殿喗鐓¢、妤呭礋椤戣姤瀚奸梻浣告贡鏋繛鎾棑缁骞樼€靛摜顔曢柣鐘叉厂閸涱厼鐓傞梺杞扮閻楀﹥绌辨繝鍥ч柛娑卞枛濞呫倝姊虹粙娆惧剬闁告挻绻勯幑銏犫攽閸モ晝鐦堥梺绋挎湰缁嬫垵鈻嶉敐鍜佹富闁靛牆绻掗崚浼存煏閸喐鍊愭鐐插暞缁傛帞鈧絽鐏氶弲顒€鈹戦悙鏉戠仸閽冮亶鎮归崶鈺佷槐婵﹨娅i幏鐘诲灳閾忣偆浜堕梻浣藉吹閸o附淇婇崶顒€绠查柕蹇曞Л閺€浠嬫倵閿濆簼绨介柛濠勫仱濮婃椽妫冨ù銈嗙洴瀹曟﹢濡搁妷顔藉枠濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬崘顫夐妵鍕冀椤愵澀绮堕梺缁樺笒閻忔岸濡甸崟顖氱闁瑰瓨绻嶆禒鑲╃磼閻愵剙鍔ゆい顓犲厴瀵鎮㈤悡搴n槶閻熸粌绻掗弫顔尖槈閵忥紕鍘介梺瑙勫劤椤曨厼煤閹绢喗鐓欐い鏃傜摂濞堟粓鏌℃担鐟板闁诡垱妫冮崹楣冩嚑椤掍焦娅﹀┑鐘垫暩婵參骞忛崘顔肩妞ゅ繐鍟版す鎶芥⒒娓氣偓閳ь剚绋撻埞鎺楁煕閺傝法肖闁瑰箍鍨归埞鎴犫偓锝庝簻缁愭稑顪冮妶鍡樼闁瑰啿绉瑰畷顐⑽旈崨顔规嫽婵炶揪绲介幉锛勬嫻閿熺姵鐓欓柧蹇e亝鐏忕敻鏌嶈閸撴艾顫濋妸锔芥珷婵°倓鑳堕埞宥呪攽閻樺弶鎼愮紒鐘垫嚀闇夐柨婵嗙墕閳ь兛绮欐俊鎼佸煛閸屾粌寮抽梻浣告惈閸熺娀宕戦幘缁樼厱閹艰揪绱曢敍宥囩磼鏉堚晛浠辨鐐村笒铻栧ù锝呭级鐎氫粙姊绘担鍛靛綊寮甸鍕仭闁靛ň鏅涚粈鍌溾偓鍏夊亾闁告洦鍓涢崢鐢告⒑閹勭闁稿鎳庨悾宄扮暆閳ь剟鍩€椤掑喚娼愭繛鍙夌矒瀵偆鎷犲顔兼婵炲濮撮鎰板极閸ヮ剚鐓熼柟閭﹀弾閸熷繘鏌涢悙鍨毈婵﹦绮幏鍛存嚍閵壯佲偓濠囨⒑闂堚晝绉剁紒鐘虫崌閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟�...

目前,大多数的汽车轮胎都取消了内胎,这为轮胎内置感应传感器的安装带来极大的方便,其产品占有应用市场的绝大多数份额,且发展速度较快,但是在直接式轮胎爆胎预警系统发展和应用过程中,由于其所处环境的复杂性决定其需要更加可靠的硬件设计来维持系统的稳定工作,这其中有2个突出的问题严重制约轮胎爆胎预警系统的发展,一是如何延长系统总的工作时间,二是如何通过检测端射频天线设计来增强数据的有效发射。本文以这两个突出问题为出发点,在轮胎爆胎预警系统硬件设计上进行改进,从而有效地延长系统工作时间和天线射频信号发射可靠性。

2 延长系统工作时间

传统的轮胎气压温度检测端通常将传感器、微控制器、射频天线和电池集中密封在一个电路板上,用铝制螺杆通过轮胎气门嘴固定在轮毂上,检测端电池无法更新,其总工作时间取决于系统功耗大小和电池容量,一旦电池没电,就必须更换新的检测端。这种一次性的做法不仅费工而且运行成本较高,给大范围普及轮胎爆胎预警系统造成很大困难。本文通过设计可更换的轮胎监测端电池结构和采用LF低频唤醒技术降低功耗两种方法来有效延长系统工作时间。

2.1 检测端内置传感器外置电池设计

文中设计一种应用在轮胎检测端的内置传感器外置电池的设计。该设计与传统方法最大的不同之处在于锂电池外置并固定在轮胎气门嘴上,在可靠为测量端提供电源的基础上能确保电池更换方便,可无限延长检测端的工作时间,其具体结构如图2所示。电池的正负极通过特制垫片向传感器供电且彼此用绝缘橡胶垫隔离。当需要为轮胎充气时,只需拧下电池仓,即可直接向轮胎充气。需要强调,由于电池和和传感器等装置的安装,造成轮胎的质量分布不均,在轮胎高速旋转时,不平衡的离心力作用会引起车体振动,影响汽车的操控性能和安全性能。所以使用之前,必须对4个轮胎做静平衡、力偶平衡和动平衡等相关测试。同时还应保证电池耗尽时更换同一厂家同一型号的电池,保证轮胎的各项平衡参数。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂備線娼уΛ娆戞暜閹烘缍栨繝闈涱儐閺呮煡鏌涘☉鍗炲妞ゃ儲鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊╂倻閽樺锛涘┑鐐村灍閹崇偤宕堕浣镐缓缂備礁顑呴悘婵嬫倵椤撶喍绻嗛柕鍫濈箳閸掍即鏌涢悤浣镐簽缂侇喛顕ч埥澶娢熻箛鎾剁Ш闁轰焦鍔欏畷銊╊敊鐠侯煈鏀ㄧ紓鍌氬€风粈渚€顢栭崟顖涘殑闁告挷鐒﹂~鏇㈡煙閹规劦鍤欑痪鎯у悑閹便劌顫滈崱妤€骞嬮梺绋款儐閹瑰洭骞冨⿰鍫熷殟闁靛鍎崑鎾诲锤濡や胶鍙嗛梺鍝勬处濮樸劑宕濆澶嬬厵闁告劘灏欓悞鍛婃叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭闂傚倷娴囧畷鐢稿窗閸℃稑纾块柟鎯版缁犳煡鏌曡箛鏇烆€屾繛绗哄姂閺屽秷顧侀柛鎾寸懇椤㈡岸鏁愰崱娆戠槇濠殿喗锕╅崢鍏肩濠婂懐纾奸柣鎰靛墮椤庢粌顪冪€涙ɑ鍊愮€殿喗鐓¢、妤呭礋椤戣姤瀚奸梻浣告贡鏋繛鎾棑缁骞樼€靛摜顔曢柣鐘叉厂閸涱厼鐓傞梺杞扮閻楀﹥绌辨繝鍥ч柛娑卞枛濞呫倝姊虹粙娆惧剬闁告挻绻勯幑銏犫攽閸モ晝鐦堥梺绋挎湰缁嬫垵鈻嶉敐鍜佹富闁靛牆绻掗崚浼存煏閸喐鍊愭鐐插暞缁傛帞鈧絽鐏氶弲顒€鈹戦悙鏉戠仸閽冮亶鎮归崶鈺佷槐婵﹨娅i幏鐘诲灳閾忣偆浜堕梻浣藉吹閸o附淇婇崶顒€绠查柕蹇曞Л閺€浠嬫倵閿濆簼绨介柛濠勫仱濮婃椽妫冨ù銈嗙洴瀹曟﹢濡搁妷顔藉枠濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬崘顫夐妵鍕冀椤愵澀绮堕梺缁樺笒閻忔岸濡甸崟顖氱闁瑰瓨绻嶆禒鑲╃磼閻愵剙鍔ゆい顓犲厴瀵鎮㈤悡搴n槶閻熸粌绻掗弫顔尖槈閵忥紕鍘介梺瑙勫劤椤曨厼煤閹绢喗鐓欐い鏃傜摂濞堟粓鏌℃担鐟板闁诡垱妫冮崹楣冩嚑椤掍焦娅﹀┑鐘垫暩婵參骞忛崘顔肩妞ゅ繐鍟版す鎶芥⒒娓氣偓閳ь剚绋撻埞鎺楁煕閺傝法肖闁瑰箍鍨归埞鎴犫偓锝庝簻缁愭稑顪冮妶鍡樼闁瑰啿绉瑰畷顐⑽旈崨顔规嫽婵炶揪绲介幉锛勬嫻閿熺姵鐓欓柧蹇e亝鐏忕敻鏌嶈閸撴艾顫濋妸锔芥珷婵°倓鑳堕埞宥呪攽閻樺弶鎼愮紒鐘垫嚀闇夐柨婵嗙墕閳ь兛绮欐俊鎼佸煛閸屾粌寮抽梻浣告惈閸熺娀宕戦幘缁樼厱閹艰揪绱曢敍宥囩磼鏉堚晛浠辨鐐村笒铻栧ù锝呭级鐎氫粙姊绘担鍛靛綊寮甸鍕仭闁靛ň鏅涚粈鍌溾偓鍏夊亾闁告洦鍓涢崢鐢告⒑閹勭闁稿鎳庨悾宄扮暆閳ь剟鍩€椤掑喚娼愭繛鍙夌矒瀵偆鎷犲顔兼婵炲濮撮鎰板极閸ヮ剚鐓熼柟閭﹀弾閸熷繘鏌涢悙鍨毈婵﹦绮幏鍛存嚍閵壯佲偓濠囨⒑闂堚晝绉剁紒鐘虫崌閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟�...

2.2 LF低频唤醒装置

延长系统总的工作时间还可以采取降低轮胎测量端电流消耗的方式。即当汽车停止时或低速运行时,系统不需要知道轮胎的各项参数,可以使轮胎检测端进入休眠状态。当系统需要轮胎数据时,可用LF低频唤醒装置唤醒处于休眠状态的轮胎检测端。所谓低频唤醒技术由谐振电路发展而来,如图3所示。图中右边为LC组成的串联谐振电路,它的固有谐振频率为闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂備線娼уΛ娆戞暜閹烘缍栨繝闈涱儐閺呮煡鏌涘☉鍗炲妞ゃ儲鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊╂倻閽樺锛涘┑鐐村灍閹崇偤宕堕浣镐缓缂備礁顑呴悘婵嬫倵椤撶喍绻嗛柕鍫濈箳閸掍即鏌涢悤浣镐簽缂侇喛顕ч埥澶娢熻箛鎾剁Ш闁轰焦鍔欏畷銊╊敊鐠侯煈鏀ㄧ紓鍌氬€风粈渚€顢栭崟顖涘殑闁告挷鐒﹂~鏇㈡煙閹规劦鍤欑痪鎯у悑閹便劌顫滈崱妤€骞嬮梺绋款儐閹瑰洭骞冨⿰鍫熷殟闁靛鍎崑鎾诲锤濡や胶鍙嗛梺鍝勬处濮樸劑宕濆澶嬬厵闁告劘灏欓悞鍛婃叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭闂傚倷娴囧畷鐢稿窗閸℃稑纾块柟鎯版缁犳煡鏌曡箛鏇烆€屾繛绗哄姂閺屽秷顧侀柛鎾寸懇椤㈡岸鏁愰崱娆戠槇濠殿喗锕╅崢鍏肩濠婂懐纾奸柣鎰靛墮椤庢粌顪冪€涙ɑ鍊愮€殿喗鐓¢、妤呭礋椤戣姤瀚奸梻浣告贡鏋繛鎾棑缁骞樼€靛摜顔曢柣鐘叉厂閸涱厼鐓傞梺杞扮閻楀﹥绌辨繝鍥ч柛娑卞枛濞呫倝姊虹粙娆惧剬闁告挻绻勯幑銏犫攽閸モ晝鐦堥梺绋挎湰缁嬫垵鈻嶉敐鍜佹富闁靛牆绻掗崚浼存煏閸喐鍊愭鐐插暞缁傛帞鈧絽鐏氶弲顒€鈹戦悙鏉戠仸閽冮亶鎮归崶鈺佷槐婵﹨娅i幏鐘诲灳閾忣偆浜堕梻浣藉吹閸o附淇婇崶顒€绠查柕蹇曞Л閺€浠嬫倵閿濆簼绨介柛濠勫仱濮婃椽妫冨ù銈嗙洴瀹曟﹢濡搁妷顔藉枠濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬崘顫夐妵鍕冀椤愵澀绮堕梺缁樺笒閻忔岸濡甸崟顖氱闁瑰瓨绻嶆禒鑲╃磼閻愵剙鍔ゆい顓犲厴瀵鎮㈤悡搴n槶閻熸粌绻掗弫顔尖槈閵忥紕鍘介梺瑙勫劤椤曨厼煤閹绢喗鐓欐い鏃傜摂濞堟粓鏌℃担鐟板闁诡垱妫冮崹楣冩嚑椤掍焦娅﹀┑鐘垫暩婵參骞忛崘顔肩妞ゅ繐鍟版す鎶芥⒒娓氣偓閳ь剚绋撻埞鎺楁煕閺傝法肖闁瑰箍鍨归埞鎴犫偓锝庝簻缁愭稑顪冮妶鍡樼闁瑰啿绉瑰畷顐⑽旈崨顔规嫽婵炶揪绲介幉锛勬嫻閿熺姵鐓欓柧蹇e亝鐏忕敻鏌嶈閸撴艾顫濋妸锔芥珷婵°倓鑳堕埞宥呪攽閻樺弶鎼愮紒鐘垫嚀闇夐柨婵嗙墕閳ь兛绮欐俊鎼佸煛閸屾粌寮抽梻浣告惈閸熺娀宕戦幘缁樼厱閹艰揪绱曢敍宥囩磼鏉堚晛浠辨鐐村笒铻栧ù锝呭级鐎氫粙姊绘担鍛靛綊寮甸鍕仭闁靛ň鏅涚粈鍌溾偓鍏夊亾闁告洦鍓涢崢鐢告⒑閹勭闁稿鎳庨悾宄扮暆閳ь剟鍩€椤掑喚娼愭繛鍙夌矒瀵偆鎷犲顔兼婵炲濮撮鎰板极閸ヮ剚鐓熼柟閭﹀弾閸熷繘鏌涢悙鍨毈婵﹦绮幏鍛存嚍閵壯佲偓濠囨⒑闂堚晝绉剁紒鐘虫崌閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟�... ,当其天线L3接收到这个频率信号时便会使电路发生谐振而产生感应电压。由电磁场理论:r<<λ/2π=c/2πf时,能收到磁场感应。其中λ为信号波长,f为信号频率,c为光速,r为发射与接收之间的距离。该LF低频信号选用125 kHz,根据以上公式其适用距离可达上百米,完全适用于驾驶室与轮胎之间1~2 m的距离。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂備線娼уΛ娆戞暜閹烘缍栨繝闈涱儐閺呮煡鏌涘☉鍗炲妞ゃ儲鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊╂倻閽樺锛涘┑鐐村灍閹崇偤宕堕浣镐缓缂備礁顑呴悘婵嬫倵椤撶喍绻嗛柕鍫濈箳閸掍即鏌涢悤浣镐簽缂侇喛顕ч埥澶娢熻箛鎾剁Ш闁轰焦鍔欏畷銊╊敊鐠侯煈鏀ㄧ紓鍌氬€风粈渚€顢栭崟顖涘殑闁告挷鐒﹂~鏇㈡煙閹规劦鍤欑痪鎯у悑閹便劌顫滈崱妤€骞嬮梺绋款儐閹瑰洭骞冨⿰鍫熷殟闁靛鍎崑鎾诲锤濡や胶鍙嗛梺鍝勬处濮樸劑宕濆澶嬬厵闁告劘灏欓悞鍛婃叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭闂傚倷娴囧畷鐢稿窗閸℃稑纾块柟鎯版缁犳煡鏌曡箛鏇烆€屾繛绗哄姂閺屽秷顧侀柛鎾寸懇椤㈡岸鏁愰崱娆戠槇濠殿喗锕╅崢鍏肩濠婂懐纾奸柣鎰靛墮椤庢粌顪冪€涙ɑ鍊愮€殿喗鐓¢、妤呭礋椤戣姤瀚奸梻浣告贡鏋繛鎾棑缁骞樼€靛摜顔曢柣鐘叉厂閸涱厼鐓傞梺杞扮閻楀﹥绌辨繝鍥ч柛娑卞枛濞呫倝姊虹粙娆惧剬闁告挻绻勯幑銏犫攽閸モ晝鐦堥梺绋挎湰缁嬫垵鈻嶉敐鍜佹富闁靛牆绻掗崚浼存煏閸喐鍊愭鐐插暞缁傛帞鈧絽鐏氶弲顒€鈹戦悙鏉戠仸閽冮亶鎮归崶鈺佷槐婵﹨娅i幏鐘诲灳閾忣偆浜堕梻浣藉吹閸o附淇婇崶顒€绠查柕蹇曞Л閺€浠嬫倵閿濆簼绨介柛濠勫仱濮婃椽妫冨ù銈嗙洴瀹曟﹢濡搁妷顔藉枠濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬崘顫夐妵鍕冀椤愵澀绮堕梺缁樺笒閻忔岸濡甸崟顖氱闁瑰瓨绻嶆禒鑲╃磼閻愵剙鍔ゆい顓犲厴瀵鎮㈤悡搴n槶閻熸粌绻掗弫顔尖槈閵忥紕鍘介梺瑙勫劤椤曨厼煤閹绢喗鐓欐い鏃傜摂濞堟粓鏌℃担鐟板闁诡垱妫冮崹楣冩嚑椤掍焦娅﹀┑鐘垫暩婵參骞忛崘顔肩妞ゅ繐鍟版す鎶芥⒒娓氣偓閳ь剚绋撻埞鎺楁煕閺傝法肖闁瑰箍鍨归埞鎴犫偓锝庝簻缁愭稑顪冮妶鍡樼闁瑰啿绉瑰畷顐⑽旈崨顔规嫽婵炶揪绲介幉锛勬嫻閿熺姵鐓欓柧蹇e亝鐏忕敻鏌嶈閸撴艾顫濋妸锔芥珷婵°倓鑳堕埞宥呪攽閻樺弶鎼愮紒鐘垫嚀闇夐柨婵嗙墕閳ь兛绮欐俊鎼佸煛閸屾粌寮抽梻浣告惈閸熺娀宕戦幘缁樼厱閹艰揪绱曢敍宥囩磼鏉堚晛浠辨鐐村笒铻栧ù锝呭级鐎氫粙姊绘担鍛靛綊寮甸鍕仭闁靛ň鏅涚粈鍌溾偓鍏夊亾闁告洦鍓涢崢鐢告⒑閹勭闁稿鎳庨悾宄扮暆閳ь剟鍩€椤掑喚娼愭繛鍙夌矒瀵偆鎷犲顔兼婵炲濮撮鎰板极閸ヮ剚鐓熼柟閭﹀弾閸熷繘鏌涢悙鍨毈婵﹦绮幏鍛存嚍閵壯佲偓濠囨⒑闂堚晝绉剁紒鐘虫崌閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟�...

实际应用中可以利用驾驶室内的控制模块通过三维正交阵列天线(3个天线分别置于x,y和z方向)向各个轮胎方向发射125 kHz LF信号,信号触发轮胎检测模块的LC谐振电路,从而唤醒处于休眠状态的检测端。在这一过程中,经过曼彻斯特编码的串行数据通过LF驱动电路调

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top