EMI控制方法:屏蔽、滤波、接地
则会出现细缝而形成槽状天线,其辐射波长比缝隙长度小约4倍。
确保导通性首先要保证垫片表面平滑、干净并经过必要处理以具有良好导电性,这些表面在接合之前必须先遮住;另外屏蔽衬垫材料对这种垫片具有持续良好的粘合性也非常重要。导电衬垫的可压缩特性可以弥补垫片的任何不规则情况。
所有衬垫都有一个有效工作最小接触电阻,设计人员可以加大对衬垫的压缩力度以降低多个衬垫的接触电阻,当然这将增加密封强度,会使屏蔽罩变得更为弯曲。大多数衬垫在压缩到原来厚度的30%至70%时效果比较好。因此在建议的最小接触面范围内,两个相向凹点之间的压力应足以确保衬垫和垫片之间具有良好的导电性。
另一方面,对衬垫的压力不应大到使衬垫处于非正常压缩状态,因为此时会导致衬垫接触失效,并可能产生电磁泄漏。与垫片分离的要求对于将衬垫压缩控制在制造商建议范围非常重要,这种设计需要确保垫片具有足够的硬度,以免在垫片紧固件之间产生较大弯曲。在某些情况下,可能需要另外一些紧固件以防止外壳结构弯曲。
压缩性也是转动接合处的一个重要特性,如在门或插板等位置。若衬垫易于压缩,那么屏蔽性能会随着门的每次转动而下降,此时衬垫需要更高的压缩力才能达到与新衬垫相同的屏蔽性能。在大多数情况下这不太可能做得到,因此需要一个长期EMI解决方案。
如果屏蔽罩或垫片由涂有导电层的塑料制成,则添加一个EMI衬垫不会产生太多问题,但是设计人员必须考虑很多衬垫在导电表面上都会有磨损,通常金属衬垫的镀层表面更易磨损。随着时间增长这种磨损会降低衬垫接合处的屏蔽效率,并给后面的制造商带来麻烦。
如果屏蔽罩或垫片结构是金属的,那么在喷涂抛光材料之前可加一个衬垫把垫片表面包住,只需用导电膜和卷带即可。若在接合垫片的两边都使用卷带,则可用机械固件对EMI衬垫进行紧固,例如带有塑料铆钉或压敏粘结剂(PSA)的"C型"衬垫。衬垫安装在垫片的一边,以完成对EMI的屏蔽。
推广开来说,不仅仅针对高频电路,一般系统都需要进行屏蔽,这是因为结构本身存在一些槽和缝隙。所需屏蔽可通过一些基本原则确定,但是理论与现实之间还是有差别。例如在计算某个频率下衬垫的大小和间距时还必须考虑信号的强度,如同在一个设备中使用了多个处理器时的情形。表面处理及垫片设计是保持长期屏蔽以实现EMC性能的关键因素。
2滤波
滤波通常采用三种器件来实现:去耦电容、EMI滤波器和磁性元件。
2.1去耦电容
前面我们曾经分析过,当电路在很快的器件高低电平变换的时候,就会产生一系列的正弦谐波分量,这些正弦谐波分量就是我们所说的EMI成分,这些高频谐波会通过和其他设备之间的耦合通道对其他设备造成电磁干扰。合理使用去耦电容就能起到很好的抑制电磁干扰的效果,实际的电容是可以等效图3所示的模型:

图3 电容的等效模型
其中等效串联电阻我们称之为ESR,等效串联电感我们称之为ESL,我们可以计算出这个等效电容的谐振频率为:
Fr=1/2π√LC
电容的滤波原理就是通过这个频率来确定。小于谐振频率的时,电容体现为容性,而当频率大于谐振频率的时,电容就体现为感性。所以,我们在滤除较为低频的噪声的时候,就应当选择电容值比较高的电容,想滤去频率较高的噪声,比如我们前面所说的EMI,则应该选择数值比较小的电容。所以,在实际中,我们通常放置一个1uf到10uf左右的去耦电容在每个电源输出管脚处,来抑制低频成分,而选取O.01uf到O.1uf左右的去耦电容来滤除高频部分(对去耦电容的特性分析请参考第五章电源完整性分析)。 为了获得最佳的EMI抑制效果,我们最好能在每组电源和地的引脚都能安装一个电容,但是如果电源在流出引脚前在Ic内部已经放置去耦电容,那么在引脚处就不必在和每个地之间连接一个电容了.但是这样对IC芯片的成本会相应提高。
图4是一个放置耦合电容和不放置耦合电容的EMI仿真比较:

图4 去耦电容对抑制EMI的作用
2.2 EMI滤波器
EMI滤波一般是用在对电源线的滤波,它是用来隔离电路板或者系统内外的电源,它的作用是双向的,即可以作为输出滤波,也可以作为输入滤波.EMI滤波器是由电感和电容组成。比较常见的几种EMI滤波器有:穿心电容,L型滤波器,Ⅱ型滤波器,T型滤波器等。对于不同滤波器的选择,我们通常是通过滤波器接入端的阻抗大小来决定。如果电源线两端都为高阻,那么易选用穿心电容和Ⅱ型滤波器,但是Ⅱ型滤波器的衰减速度比穿心电容大;如果两端阻抗相差比较大,适宜选择L型
- 答疑解惑 盘点在开关电源设计中的经典问答题(01-02)
- 利用屏蔽栅极功率MOSFET技术降低传导和开关损耗(05-17)
- 一种新型过流保护电路设计(07-27)
- IC设计中接地方法的应用(02-09)
- 电路EMI的常用抑制方式(09-14)
- 同轴电缆质量检测方法(09-22)
