基于ZigBee和北斗导航芯片的无线终端设计
北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国正在实施的自主研发、独立运行的全球卫星导航系统。北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,包括向全球免费提供定位、测速和授时服务。目前,北斗卫星系统的建设正按计划稳步推进,目前已成功发射了16颗北斗导航卫星,服务范围覆盖了亚太地区。
无线传感器网络(Wireless Sensor Network,WSN)是由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并最终把这些信息发送给网络的所有者。在无线传感网技术中,最为符合低功耗、低成本、高可靠性要求的当属ZigBee技术。ZigBee技术是一种工作在全球、美国和欧洲3个频段上的无线通信技术,基于无线通信协议。它具有低功耗、低成本、低复杂度、自动组网的特点,主要适合于短距离无线通信、组网、自动控制和远程控制等领域,并可以嵌入至各种设备中。
这两种热门技术特点鲜明,如果将它们结合,即把定位导航技术与短距离组网技术结合,就可以实现更广泛和更复杂的应用,满足对于不同规模和要求的检测、定位、导航等各项需求,方便数据传输,弥补现有技术产品的空白。
1 创新功能
1.1 精确定位
ZigBee节点广泛应用于野外环境勘测、智能交通监控等领域,单纯的ZigBee节点采集的数据是一维数据,孤立的数据不利于分析与决策。如果将采集地的位置信息也一起获取,就可以把采集到的环境信息与位置信息相结合,在汇总、分析时绘制成一个二维的数据地图,更将直观地了解信息的分布状况;而如果再加上精确的时间,就组成了三维的数据体,这样的数据更加综合、全面。
1.2 间接定位
卫星定位通常要求在有天空视野的室外,因而在室内就定位困难。利用ZigBee的间接定位,当周围已经存在了包含定位设备的ZigBee网络时,就可以接入ZigBee网络实现间接定位。相当于在这个区域内任意可接入网络的地点提供了实时间接定位的服务,任何设备都可以透过ZigBee网络获取自己当前的位置信息,这样不仅降低了定位服务的成本,也扩大了定位的应用范围。
1.3 网络授时
ZigBee网络虽然具备低成本、低功耗、高可靠性的优势,但是考虑到网络延时和较低的数据传输速率,因此在系统实时性方面不尽如人意。当ZigBee网络面对的是某种对实时性要求较高的应用时,势必会因为较大的时延,影响数据的精确性。如果采用从北斗卫星导航系统获取的精确时间,然后对全网所有节点校时,那么节点的同步性就得到了提高,从而提高系统的响应速度。
1.4 数据通信
北斗卫星导航系统虽然可以提供精确的时间和位置信息,但是却没有信息的传递能力,ZigBee网络就为这种信息组织提供了一种简便的方式。通过把北斗定位的数据架设于ZigBee网络之中,就可以让位置信息传递起来。
2 北斗+ZigBee终端的系统设计
2.1 结构体系
北斗导航系统与ZigBee网络结构体系如图1所示,主要由ZigBee网络节点和北斗导航节点组成。传感网子网内一般由一个主节点和多个节点组成。主节点主要负责ZigBee网络的组网和网内设备的管理,同时与北斗定位导航模块通信。
2.2 硬件设计
在ZigBee节点的设计上,选用Freescale公司针对ZigBee技术推出的MC13213芯片。该芯片是完整的单芯片解决方案,其内部集成了HCS 08 MCU和遵循IEEE802.15.4标准的第二代无线射频收发器,也称为Modem。MC13213能够以非常低的总材料成本建立强大的网络节点。其特点是速度快,片内资源丰富。其硬件框图如图2所示。
北斗定位导航模块以芯星通公司的UM220芯片为核心设计。UM220是针对车辆监控、气象探测和电信电力授时等应用而推出的北斗/GPS双系统模块。单芯片支持北斗BD2/GPS功能,无需外接CPU即可直接输出NMEA数据,支持UART、SPI、1PPS、I2C等多种接口。引脚连接如图3所示,本设计通过TXD3、RXD3分别与MC13213的PTE1(TXD1)、PTE0(RXD1)相连,实现数据通信。
- ZigBee、GPRS在充电桩中的应用(04-18)
- ZigBee语音传输分析(11-25)
- 基于ZigBee无线传感网的电源监控系统设计(04-21)
- CC2538单芯片支持物联网及ZigBee等多种标准(04-15)
- 无线传输的电能质量监测系统电路(06-10)
- 无线节水滴灌自动控制系统的设计方案(02-08)