微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 多种ADC的分析比较

多种ADC的分析比较

时间:02-19 来源:本站整理 点击:

部利用高倍频过采样技术,实现了数字滤波,降低了对传感器信号进行滤波的要求。

  缺点:高速∑-△型ADC的价格较高;在转换速率相同的条件下,比积分型和逐次逼近型ADC的功耗高。

  6.流水线型ADC

  流水线结构ADC,又称为子区式ADC,它是一种高效和强大的模数转换器。它能够提供高速、高分辨率的模数转换,并且具有令人满意的低功率消耗和很小的芯片尺寸;经过合理的设计,还可以提供优异的动态特性。

  流水线型ADC由若干级级联电路组成,每一级包括一个采样/保持放大器、一个低分辨率的ADC和DAC以及一个求和电路,其中求和电路还包括可提供增益的级间放大器。快速精确的n位转换器分成两段以上的子区(流水线)来完成。首级电路的采样/保持器对输入信号取样后先由一个m位分辨率粗A/D转换器对输入进行量化,接着用一个至少n位精度的乘积型数模转换器(MDAC)产生一个对应于量化结果的模/拟电平并送至求和电路,求和电路从输入信号中扣除此模拟电平。并将差值精确放大某一固定增益后关交下一级电路处理。经过各级这样的处理后,最后由一个较高精度的K位细A/D转换器对残余信号进行转换。将上述各级粗、细A/D的输出组合起来即构成高精度的n位输出。

  优点:有良好的线性和低失调;可以同时对多个采样进行处理,有较高的信号处理速度,典型的为Tconv<100ns;低功率;高精度;高分辨率;可以简化电路。

  缺点:基准电路和偏置结构过于复杂;输入信号需要经过特殊处理,以便穿过数级电路造成流水延迟;对锁存定时的要求严格;对电路工艺要求很高,电路板上设计得不合理会影响增益的线性、失调及其它参数。

  目前,这种新型的ADC结构主要应用于对THD和SFDR及其它频域特性要求较高的通讯系统,对噪声、带宽和瞬态相应速度等时域特性要求较高的CCD成像系统,对时域和频域参数都要求较高的数据采集系统。

  确定A/D转换器件在确定设计方案后,首先需要明确A/D转换的需要的指标要求,包括数据精度、采样速率、信号范围等等。

  1.确定A/D转换器的位数在选择A/D器件之前,需要明确设计所要达到的精度。精度是反映转换器的实际输出接近理想输出的精确程度的物理量。在转化过程中,由于存在量化误差和系统误差,精度会有所损失。其中量化误差对于精度的影响是可计算的,它主要决定于A/D转换器件的位数。A/D转换器件的位数可以用分辨率来表示。一般把8位以下的A/D转换器称为低分辨率ADC,9~12位称为中分辨率ADC,13位以上为高分辨率。A/D器件的位数越高,分辨率越高,量化误差越小,能达到的精度越高。理论上可以通过增加A/D器件的位数,无止境提高系统的精度。但事实并非如此,由于A/D前端的电路也会有误差,它也同样制约着系统的精度。

  比如,用A/D采集传感器提供的信号,传感器的精度会制约A/D采样的精度,经A/D采集后信号的精度不可能超过传感器输出信号的精度。设计时应当综合考虑系统需要的精度以及前端信号的精度。

  2.选择A/D转换器的转换速率在不同的应用场合,对转换速率的要求是不同的,在相同的场合,精度要求不同,采样速率也会不同。采样速率主要由采样定理决定。确定了应用场合,就可以根据采集信号对象的特性,利用采样定理计算采样速率。如果采用数字滤波技术,还必须进行过采样,提高采样速率。

  3.判断是否需要采样/保持器采样/保持器主要用于稳定信号量,实现平顶抽样。对于高频信号的采集,采样/保持器是非常必要的。如果采集直流或者低频信号,可以不需要采样保持器。

  4.选择合适的量程模拟信号的动态范围较大,有时还有可能出现负电压。在选择时,待测信号的动态范围最好在A/D器件的量程范围内。以减少额外的硬件付出。

  5.选择合适的线形度在A/D采集过程中,线形度越高越好。但是线形度越高,器件的价格也越高。当然,也可以通过软件补偿来减少非线性的影响。所以在设计时要综合考虑精度、价格、软件实现难度等因素

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top