微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 电磁兼容(EMC) > 提高汽车电器电磁兼容性的三大措施

提高汽车电器电磁兼容性的三大措施

时间:10-04 来源: 点击:
容性要面对的问题

汽车电器电磁兼容性需要面对的3个技术问题是:

①探讨电器产生的电磁辐射(EME)并控制为最小;

②电源电压的瞬变,车灯、起动机等重负载和感性负载引起的瞬态干扰是如何恶化汽车的电磁环境的;

③如何把电磁敏感性(EMS)降低到最小。电磁敏感性(Electro-MagneTIc SuscepTIbility)是指存在电磁骚扰的情况下,装置设备或系统对自身性能降低的无作为能力。当敏感性低时,抗扰性则强,足以防护电器电子产品 免受其它系统有害辐射的影响。曾有EMC=EMI+EMS这样一个模拟的公式,表示电磁兼容性是研究降低电磁干扰和降低电磁敏感性,即增强抗干扰能力的。

(二)提高电磁兼容性能的措施

降低电器的电磁干扰强度:①要降低发电机纹波电流。交流发电机是大的功率源,减小高次谐波分量可以大幅度降低传导和辐射干扰,对电器而言输入电流谐波属于 EMI;②应在闪光器触点前加电弧抑制器;③感性负载(如刮水电动机、燃油泵、起动机)有电刷换向器,需要滤波电容器旁路换向火花所产生的高频辐射。电容 要达到良好的滤波效果,它与噪声源的公共搭铁之间的连线要尽量短。

自由空间中的导线电感每毫米约为0.04nH。如果电刷产生的噪声频率为50~100MHz,当电容连接的导线长度为100~150mm时,导线不计线间 电容,则感抗XL=2πfL=3.77Ω;而0.1μF电容的容抗XC=1/(2πfC)=0.159Ω。若导线长度缩短为25mm,感抗仅为 0.628Ω,滤波电容效果提高80%。滤波器件应直接由噪声源搭铁,使回路阻抗最小,有最佳滤波效果。必须注意,有交流分量的输入端安装电容一定要慎 重,解决EMC问题的同时,不能引起过大的漏电流,超出安全规范的规定。

在电刷上连接一个10~25μH的电感,吸收电刷通过换向器间隙时流经电刷电流突变的能量,串联在电路中的扼流圈和对搭铁的旁路电容组合成低通滤波器,也能抑制传导干扰。LC滤波器比单个电容有更宽的滤波带宽,而干扰波形尖峰产生的辐射干扰的抑制通过屏蔽来实现。

同一设计的汽车电机电器产生的干扰,由于工艺等的差异在幅度和频率上有很大的随机性。有一个良好的搭铁线,甚至将产生干扰的电器装置限制在一块公共搭铁板 上,就近接到车体或线束的屏蔽层搭铁,才能保证滤波、屏蔽最有效。低频电路的搭铁,应尽量采用单点并联搭铁;高频电路宜多点串联搭铁,搭铁线短而粗,更有 效抑制长搭铁走线产生的共模干扰。输入输出元件尽量隔远些,高频元件间要防止分布参数造成相互干扰。

合理布线,合理规划线束,使大功率干扰电路应尽可能紧靠负载,小功率敏感电路紧靠信号源,尽量分开大功率电路和小功率电路,减小线束间感应干扰和辐射干 扰。经过滤波的电源线要尽量远离各种信号线,以防高频信号耦合到电源线,造成传导发射超标。对较长的线束应在线束上增加滤波器,常用的方法是套上铁氧体磁 环,降低传导和辐射干扰。用于抑制电磁干扰的磁环不同于一般用做电感的铁氧体,它的品质因素Q值甚低,损耗较大。

滤波、屏蔽、优化布线和搭铁是4项EMC最常规采用的有效措施。但汽车钢制车体总是作为直流电源回到负极的电路,既作为搭铁线,又是射频阻抗较小的信号回 流线。所以汽车电器还采用阻尼的方法来抑制辐射。发动机火花塞的中心电极对壳体通过绝缘介质构成电容,中心电极本身又具有电感,这样就形成一个LC振荡回 路,火花塞的导线起着天线作用,以电磁波形式向空间发射,电刷与换向器、滑环间的火花,喇叭、灯开关,机械式调节器、传感器的触点开关,由于各自回路LC 的差异,射频干扰频率范围在0.15~1000MHz之间。点火装置就是采用在高压电路串入阻尼电阻有效削弱电火花产生的高频振荡,但过大的阻值会影响火 花塞电极的能量,故一般不超过20kΩ。常采用直径1mm的NiCrAl丝绕成,LCR并存,有良好的阻尼振荡辐射作用。

干扰电波具有下述特性:当从发生源临近的地方移开时先以距离3次方的速率衰减,稍远些时,以距离二次方的速率衰减,最后随距离线性衰减。

FCC第15部分规定30~88MHz的极限值为100μV/m。

在80MHz处,相距干扰源50cm的位置,测得辐射强度80μV/m,应为合格,当距离减小为30cm时,其辐射强度变为800μV/m,是极限值 100μV/m的8倍,高出18.1dB。“保护距离”的概念,是指在某种条件下使用电器设备,仍可能会产生干扰。当今汽车设计中都有一个高度集成的微控 制器MCU,它用来完成大量的计算并实现有关车辆运行的控制,包括发动机管理和制动控制。除MCU模块自身满足EMC规范外,必须使这类关键元器件在保护 距离以内,达到优良的电磁兼容性能,免受其它电器电子设备干扰。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top