微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 电磁兼容(EMC) > 汽车和工业应用中如何使用转换速率控制EMI

汽车和工业应用中如何使用转换速率控制EMI

时间:03-29 来源:电子发烧友 点击:

  除利用上述方法来降低开关节点振铃噪音外,还有另一种方法,就是使用LM5140-Q1符合汽车应用要求的同步降压控制器。LM5140-Q1的一大重要特性是转换速率控制。通过引出驱动器的源侧和接收侧引线,可以独立控制高/低侧MOSFET的接通和关闭时间。

  在低侧MOSFET关闭和高侧顶部MOSFET接通期间,开关节点电压从接地升至VIN。如果高侧顶部MOSFET接通过快,则在过渡时开关节点电压会过冲。增大RHO电阻可以降低高侧MOSFET的驱动电流,减缓该MOSFET的接通时间,同时有助于降低开关节点振铃噪音。注意:减慢高侧MOSFET的关闭时间会增大开关损耗。在低电磁辐射和高侧MOSFET的开关损耗之间选用RHO时,需要做一个权衡折衷。

  低侧MOSFET损耗包括RDS(ON)损耗、空载时间损耗和MOSFET内部体二极管的损耗。空载(高/低侧MOSFET均处于关闭状态)时,低侧MOSFET的内部体二极管可传导感应器电流。一般情况下,MOSFET的内部体二极管都有较高的正向电压降,因此其效率会大幅降低。而缩短低侧MOSFET内部体二极管传导电流的时间可以提高效率。

  利用转换速率控制可以在LM5140-Q1驱动器输出(LO引脚)和低侧MOSFET栅极之间插入一个电阻器(ROL),用来延长低侧MOSFET关闭所需的时间。减慢关闭时间可以减少低侧和高侧MOSFET传导的空载时间,提高降压转换器的效率。缩短同步降压的空载时间时,切勿同时传导高侧和低侧MOSFET。

  

  图4:降压转换器开关节点波形和转换速率控制

  我使用LM5140-Q1控制器(参见图4)改装了图1所示的电源。使用转换速率控制优化开关节点的上升和下降时间,消除了开关节点的振铃噪音。

  下一步是进行CISPR 25 Class 5传导放射。我选用了以下转换速率控制电阻器值:RHO = 10?, RHOL = 0?, RLO = 10? 和 RLOL= 10?。选择用于此应用的电阻器对于输入功率低于50W的任何应用来说都是一个很好的起点。

  图5显示了传导放射测试的结果和总结。

  

  图5:转换速率控制比较:CISPR 25 Class 5, VIN = 12V, VOUT = 3.3V, IOUT = 5A,无转换速率控制(a)和有转换速率控制(b)

  降压转换器借助LM5140-Q1和转换速率控制将传导放射降低了21dBµV。此外还增强了对开关节点上升和下降的控制,同时无需使用缓冲电路,降低了电路的复杂性和成本。

  挑选出转换速率控制电阻器的正确值,不仅可以降低电磁辐射,还能同时提高系统的效率。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top