微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 智能传感器将为物联网(IoT)带来怎样的改变?

智能传感器将为物联网(IoT)带来怎样的改变?

时间:09-19 来源:MEMS 点击:

在物联网传感器应用中,我们可识别影响系统和组件设计的几个关键系统驱动:• 低功耗:在某些应用中,低功耗是至关重要的,例如小型或便携设备。自动传感处理器与传感元器件匹配("Sensor bot")对边缘处理很有帮助,它可以决定何时传输到云端,从而降低数据传输的资源成本。• 低延迟:我们需要以最小延迟传输大量数据,因此低延迟是非常重要的。例如,虚拟现实(VR)图像中需要以实时速度发送,以跟上用户头部的动态变化。• 高数据采样率:对于快速系统的活动学习应用,可能需要高数据采样率。例如,在振动机械的预测维护中,传感器必须以足够高的速率采样,以便获取导致设备故障的所有相关数据。• 集成便捷性:差异很大,OEM制造商对其准备投资于解析传感器数据的时间和工程资源有不同的期望。为了简化传感器集成到其应用中,许多公司均需更加智能的传感器,这些传感器可提供嵌入其内部的数据处理,以匹配供应商提供的软件解决方案。例如,在机器人技术中,OEM制造商专注于机器人自身的运动,并不处理原始传感器数据。• 边缘计算:类似于上述的边缘系统。有时我们需要在边缘处理性能,这通常与低功耗和集成便捷性的先决条件息息相关。• 存储:由于传感器模组的内存成本非常高,因此云存储为本地存储及处理提供了一种可行的替代方案。也存在问题,一方面不希望传输大量不必要的数据,而另一方面却也受到传感器物理存储能力的限制。因此,我们必须实现传感器的智能化,并确保传感器放弃大多数不必要的数据,防止其内存容量被占用。

六种影响并制约物联网系统及组件设计的因素(图片来源:Bosch Sensortec)应用实例为说明以上几点,介绍几个例子。首先,如计步器等可穿戴应用,需要始终保持在线状态,电池则越小越好。其关键因素是低功耗,这可通过直接在传感器内部集成计步功能来实现。通过在必要环境下才唤醒可穿戴设备主处理器的方式,可节省电池电量。为进一步节省电力资源,可穿戴设备不能将所有计步数据传输于主机,此即为典型的边缘计算应用示例。由于功耗是最主要的考虑因素,如BHA250和 BHI160智能传感枢纽的超低功耗解决方案,就是一个理想的选择。另一个例子是快速样品设计的趋势,甚至在大型企业的用户案例市场验证中,这种趋势也越来越常见。快速样品设计通常在诸如Arduino、Raspberry Pi或其他类似的开源系统上执行,包括传感器在内的组件组合在一起来验证某个概念。为了最大程度地实现集成便捷性,这种类型的应用则需要由传感器供应商提供相对复杂的软件。开发时间则需尽可能缩短,而OEM制造商则需以有限的传感器知识开发系统设计。在许多如Arduino和Raspberry Pi的平台上都有传感器,极大地简化了其集成。结论对于成功的物联网应用来说,与一家能够理解高度复杂物联网环境的传感器供应商合作至关重要。这样的合作伙伴应可提供一系列高性能的传感器模组,并为用户的应用提出正确的解决方案。质量、本地支持及与第三方的紧密合作同样重要,第三方可提供参考设计和系统层级的专业意见。物联网需要对多种应用深入了解,并知道满足关键传感器和处理需求(如低功耗、易集成、数据速率和延迟等)的能力。只有通过理解这些不同因素之间的相互关系,才能设计出适应于快速发展物联网市场的创新及成功的产品,可让用户的生活更简单,并实现物联网的美好愿景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top