微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 通往人工智能的未来——智能终端与云大脑的结合

通往人工智能的未来——智能终端与云大脑的结合

时间:07-30 来源:Qualcomm中国 点击:

人工智能推动了互联网形态的新变化。

如果说从 PC 互联网到

移动互联网是一次大的跨越,

那么,现在我们又面临着

移动互联网向智能互联网的一次新跨越。

如果说智能终端是人的感官,

那么云就是大脑,

把智能终端和云大脑完美结合起来,

才是人工智能未来的方向。

 

在我们预想中的世界里,人工智能将使终端、机器、汽车和万物都变得更加智能,简化并丰富我们的日常生活。它们将能够基于场景认知,进行感知、推理并采取直观行动,改善目前我们提供给用户的所有体验,并解决我们目前更多交给常规算法所去处理的相关问题。

 

 

人工智能(AI)正是驱动这次革命的技术。你可能听说过这一愿景,或认为人工智能只和大数据、云端有关,但 Qualcomm 的解决方案已具备合适的功耗、散热和处理效率,让强大的人工智能算法在实际的终端上运行,而这将带来诸多优势。

 

得益于现代终端设备对大量数据的掌握,以及在算法和处理能力方面的提升,人工智能成为了快速增长的普遍趋势。新技术似乎总是出其不意地出现,但在时机成熟并取得关键进展之前,研究人员和工程师们通常需要辛苦钻研很多年。

 

在 Qualcomm,创新是我们的企业文化。我们为研发出大规模改变世界的基础技术而深感自豪。在人工智能方面也不例外。我们于十年前就开始了基础研究,目前我们的现有产品支持了许多人工智能用例:从计算机视觉和自然语言处理,到各种终端,如智能手机和汽车上的恶意软件侦测。同时,我们正在研究更广泛的课题,例如面向无线连接、电源管理和摄影的人工智能。

 

 

我们在机器学习方面有着深厚积累

 

 

我们对机器学习的投入有着悠久的历史。自 2007 年,Qualcomm 开始探索面向计算机视觉和运动控制应用的机器学习脉冲神经方法,随后还将其研究范围从仿生方法拓展到了人工神经网络——主要是深度学习领域(这是机器学习的一个子范畴)。我们多次见证了基于深度学习的网络在模式匹配任务中展现出一流的成果。一个令人瞩目的例子就是,2012 年 AlexNet 利用深度学习技术(而非传统手作计算机视觉)赢得 ImageNet 比赛。我们自己也在 ImageNet 挑战赛中利用深度学习技术获得成功,在物体定位、物体侦测和场景分类比赛中名列前三名。

 

 

我们还将自主研究和与外界人工智能团体合作的领域扩展到诸如递归神经网络、物体跟踪、自然语言处理和手写识别等其他前景广阔的领域和机器学习应用等。2014 年 9 月,我们在阿姆斯特丹开设了 Qualcomm Research 荷兰分支,作为机器学习研究的基地。我们通过 Qualcomm 创新奖学金计划与博士研究生紧密合作,开展前瞻性的理念研究。2015 年 9 月,我们与阿姆斯特丹大学(QUVA)建立联合研究实验室,专注于推动面向移动计算机视觉的、最先进的机器学习技术发展。通过收购位于阿姆斯特丹的领先人工智能公司 Scyfer,我们进一步深化与阿姆斯特丹人工智能业界的合作关系。Scyfer 的创始 人Max Welling 是阿姆斯特丹大学知名教授,主攻机器学习、计算统计学和人工智能基础研究。Scyfer 专注于应用广泛的机器学习方法以解决实际问题。Scyfer 团队将加入 Qualcomm Research 机器学习团队。

 

 

支持终端侧机器学习的出色功耗和性能

 

 

为了实现我们的智能终端愿景,我们也意识到基于机器学习的解决方案需要在终端上运行,无论终端是智能手机、汽车、机器人、无人机、机器或是其他设备。与在云端运行的人工智能相比,在终端侧运行人工智能算法——亦称推理,具有诸多优势,例如即时响应、可靠性提升、隐私保护增强,以及高效利用网络带宽。

 

 

当然,云端仍然十分重要,并作为终端侧处理的补充而存在。云端对汇集大数据以及在终端上运行的许多人工智能推理算法的训练(现阶段)是必要的。但是,在很多情况下,完全基于云端运行的推理在自动驾驶等时延敏感和关键型任务的实时应用中会遇到问题。此类应用无法负担数据传输往返的时间,或在无线覆盖变化时依靠关键功能运行。进一步讲,终端侧推理从本质来说更加私密。

 

我们不想把自己仅仅局限在运行终端侧推理。我们也与云端

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top