微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 从应用、算法、芯片角度了解语音识别技术

从应用、算法、芯片角度了解语音识别技术

时间:09-17 来源: 点击:

  基于大量数据的积累、深度神经网络模型的发展及算法的迭代优化,近年,语音识别准确率取得了不断的提升。2016年10月,微软宣布英语语音识别词错率下降到5.9%,从而能够媲美人类。现阶段,在理想的环境下,多家公司的语音识别系统已经越过了实用的门槛,并在各个领域得到了广泛的应用。

  人工智能产业链由基础层、技术层与应用层构成。同样,智能语音识别亦由这三层组成,本文从语音识别的商业化应用出发,并探讨驱动语音识别发展的算法及硬件计算能力,三位一体浅析语音识别现状、发展趋势及仍然面临的难点。

  一、应用

  智能语音技术是人工智能应用最成熟的技术之一,并拥有交互的自然性,因而,其具有巨大的市场空间。中国语音产业联盟《2015中国智能语音产业发展白皮书》数据显示,2017年全球智能语音产业规模将首次超过百亿美元,达到105亿美元。中国2017年智能语音产业规模也将首次突破百亿元,五年复合增长率超过60%。

  

   科技巨头都在打造自己的智能语音生态系统,国外有IBM、微软、Google,国内有百度、科大讯飞等。

  IBM、微软、百度等公司在语音识别方面,使用组合模型,不断提升语音识别性能。微软基于6个不同的深度神经网络构成的声学模型以及4个不同的深度神经网络构成的语言模型,取得了超越人类的识别准确率。科大讯飞则基于深度全序列卷积神经网络语音识别框架,取得了实用级的识别性能。云知声、捷通华声、思必驰等智能语音创业公司亦在不断打磨自己的识别引擎,并能够把自己的技术落地到产业中。

  在巨头和创新者的推动下,语音识别逐渐在智能家居、智能车载、语音助手、机器人等领域取得迅猛发展。

  1、智能家居

  在智能家居,尤其是智能音箱市场,亚马逊与Google处于行业统治地位,并各具特色。

  亚马逊的Echo已经卖出近千万台,引爆了在线智能音箱市场。相比于传统的音箱,Echo具有远程唤醒播放音乐、联网查询咨询信息、智能控制家电等功能。但是在智能问答方面,Echo表现一般,Google以此为突破口,发布Google Home,从亚马逊手中抢夺23.8%的智能音箱市场份额。2017年9月,亚马逊发布了多款Echo二代产品,相比一代在音质上有明显的提升,且Echo Plus具备更加强大的家居控制功能,能够自动搜索到附件的智能家居设备,并进行控制。

  在我国的语控电视、语控空调、语控照明等智能语控家电市场,科大讯飞、云知声、启英泰伦做了深入布局。

  科大讯飞联合京东发布叮咚音箱,并于2016年推出讯飞电视助理,打造智能家居领域的入口级应用。云知声提供物联网人工智能技术,通过与格力等公司合作,把自己的语音识别技术集成到终端家电产品中,另外,云知声发布的‘Pandora’语音中控方案,能够大幅缩短产品智能化周期。启英泰伦结合自己强大的硬件(终端智能语音识别芯片CI1006)及算法(深度学习语音识别引擎)优势,提供离线与在线的整套语音识别方案,并在物联网各个领域有广泛的布局。

  2、智能车载

  随着智能网联的发展,预计未来车联网在车载端的渗透率将超过50%。但是基于安全性等因素考虑,车载端智能与手机端智能有极大的差别,从手机端简单拷贝的方式并不适合车载端使用场景。语音基于其交互的自然性,被认为是未来人与车交互的主要入口路径。

  百度借助自己的人工智能生态平台,推出了智能行车助手CoDriver。科大讯飞与奇瑞等汽车制造商合作,推出了飞鱼汽车助理,推进车联网进程。搜狗与四维图新合作推出了飞歌导航。云知声、思必驰在导航、平视显示器等车载应用方面推出了多款智能语控车载产品。出门问问则基于自己的问问魔镜进入到智能车载市场。

  在语音识别的商业化落地中,需要内容、算法等各个方面的协同支撑,但是良好的用户体验是商业应用的第一要素,而识别算法是提升用户体验的核心因素。下文将从语音识别的算法发展路径、算法发展现状及前沿算法研究三个方面来探讨语音识别技术。

  二、算法

  对于语音识别系统而言,第一步要检测是否有语音输入,即,语音激活检测(VAD)。在低功耗设计中,相比于语音识别的其它部分,VAD采用always on的工作机制。当VAD检测到有语音输入之后,VAD便会唤醒后续的识别系统。识别系统总体流程如图2所示,主要包括特征提取、识别建模及模型训练、解码得到结果几个步骤。

  

  图2.语音识别系统

  1、VAD(语音激活检测)

用于判断什么时候有语音输入,什么时候是静音状态。语音识别后续的操作都是在VAD截取出来的有效片段上进行,从而能够减小语音识别系统噪

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top