集成555时基电路解析,555时基集成电路与NE555的识别及其应用
555时基集成电路是美国SigneTIcs公司于1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电阻而得名。555定时器是一种多用途的模拟电路与数字电路混合的集成电路,可以方便的构成施密特触发器,单稳态触发器和多谐振荡器。目前,流行的产品主要有4个:BJT两个:555,556(含有两个555);CMOS两个:7555,7556(含有两个7555)。
555定时器可以说是模拟电路与数字电路结合的典范。
555定时器有两个比较器 C1和 C2各有一个输入端连接到三个电阻R组成的分压器上,比较器的输出接到RS触发器上。此外还有输出级和放电管,输出级的驱动电流可达200mA。
比较器C1和C2的参考电压分别为UR1和UR2,根据C1和C2的另一个输入端——触发输入和阈值输入,可判断出RS触发器的输出状态。当复位端为低电平时,RS触发器被强制复位。若无需复位操作,复位端应接高电平。由于三个电阻等值,所以当没有控制电压输入时
UA=1/3Ucc
UB=2/3Ucc
当控制电压外接时,如外接Uc ,则
UA=1/2Uc
UB=Uc
为防止干扰,控制电压端悬空时,应接一滤波电容到地。
如下图所示为集成555时基电路的外引脚排列图,其各引脚名称如下表所示。
下表为555时基电路的逻辑功能表。表中" "表示任意情况,"保持"表示555定时器保持原来的状态,"导通"和"截止"指555时基电路内晶体管VT的工作状态。VT的集电极和发射极分别接在7脚和1脚间。
555时基集成电路与NE555的识别及其应用
⑴ 时基集成电路是一种能产生时间基准并能完成各种定时、延迟功能的非线性模拟集成电路。有金属壳圆形封装和双列直插式封装等形式,如图1所示。它广泛应用于信号产生、波形处理、定时延时、电子玩具等领域。
⑵ 电路符号、引脚如图2所示。
⑶时基集成电路将模拟电路与数字电路巧妙地结合在一起,图3为其内部方框图。电阻R1、R2、R3组成分压网络,为A1、A2两个电压比较器提供盳/2VCC和盳/1VCC的基准电压。其输出分别作为RS触发器的置"0"和置"1"信号。输出驱动级和放电管VT受RS触发器控制。由于R1~R3均为5kΩ,所以该集成电路又称为555时基电路,俗称"三5"电路。
⑷ 555时基电路工作原理是:当置"0"端R≥盳/2VCC时S》盳/1VCC),上限比较器A1输出为"1"、使输出端VO为"0",放电管VT导通,DISC端为"0"。当置"1"端S≤盳/1VCC时(R《盳/2VCC),下限比较器A2输出为"1"、使输出端VO为"1",放电管VT截止,DISC端为"1"。MR为强制复位端,MR=0时,VO=0,DISC=0。附表为电路逻辑真值表。
⑸ 时基电路可分为双极型和CMOS型两大类。有单时基电路和双时基电路。CB555是双极型单时基集成电路,输出电流达200mA,可直接驱动直流电机、继电器等。
⑹ CB556是双极型双时基电路,内含两个完全一样的互相独立的双极型555时基单元。
⑺ CB7555是CMOS型单时基集成电路,由于其输入阻抗很高,可以用较大的电阻和较小的电容获得长延时。图7为其引脚功能图。
⑻ CB7556是CMOS型双时基电路,内含两个独立的CMOS型555时基单元。图8为其引脚功能图。
⑼ 工作模式为:单稳态、无稳态、双稳态和施密特模式。图9为单稳态,R、C组成定时电路。常态为稳态,输出端③脚UO=0,放电端⑦脚导通到地,C上无电压。
⑽ 在输入端②脚输入一负触发信号Ui(≤盳/1VCC)时,电路翻转为暂稳态,UO=1,⑦脚截止,电源经R对C充电。当C上电压UC达到盳/2VCC时,电路再次翻转到稳态。脉宽TW≈1.1RC,波形如图10所示。
⑾ 多谐振荡器(无稳态电路)如图11所示,置"1"端S(②脚)和置"0"端R(⑥脚)接在一起,R1、R2和C组成充放电回路。
⑿ 刚通电时,C上无电压,输出端(③脚)UO=1,放电端(⑦脚)截止,电源经R1、R2向C充电。当C上电压UC达到盳/2VCC时,电路翻转,UO变为"0",⑦脚导通到地,C经R2放电。放电至UC=盳/1VCC时,电路再次翻转,UO又变为"1",如此周而复始形成振荡,输出方波,振荡周期T≈0.7(R1+2&TImes;R2)C,波形见图12。
⒀ 555时基电路组成的双稳态触发器如图13所示。置"1"端S(②脚)和置"0"端R(⑥脚),分别接有C1、R1和C2、R2构成的微分触发电路。
⒁ 当有负触发脉冲U2加至(②脚)时,③脚UO=1。当有正触发脉冲U6加至(⑥脚)时,UO=0。实现两个稳态,波形见图14。
⒂ 555时基电路组成的施密特触发器如图15所示,②、⑥脚接在一起作为触发信号Ui的输入端。
⒃ 当输入信
- MPC555微控制器在汽车电子中的应用(02-02)
- 如何设计一套简单、准确调光汽车照明系统(04-26)
- LED未来前景分析,基于555定时器设计的LED控制电路分析(04-18)
- 半导体巨星陨落,555定时器发明者Hans Camenzind逝世(07-16)
- 详解基于555定时器的电容测试仪设计(09-09)
- 基于555流水灯电路的设计与实现(02-25)