电量变送器是什么?电量变送器工作原理解析
电量变送器的定义
电量变送器是一种将被测电量(交流电压、电流、有功功率、无功功率、有功电能、无功电能、频率、相位、功率因数、直流电压、电流等)转换成按线性比例直流电流或电压输出(电能脉冲输出)的测量仪表。它广泛应用于电力、石油、煤炭、冶金、铁道、市政等部门的电气测量、自动控制以及调度系统。
电路变送器的工作原理
一、基本测量电路
电量变送器的基本测量电路一般由以下几个部分组成:
电量变送器测量电路组成图
1.信号输入隔离
由于我们需要测量的电量一般都为高电压(57.7-380V)和大电流(1A-10A),如果不对它们进行隔离和把幅度减小,将对人身安全和设备造成严重威胁,信号输入隔离一般采用电压互感器(PT)和电流互感器(CT),对这一部分的基本要求为:
a. 信号隔离的耐压绝缘性能要好,耐压应》2kV.
b. 线性要好,由于PT、CT都采用铁磁材料加工而成,它们的线性不好,在以后的电路中是很难补偿的,因此,一定要选用优质材料和先进工艺制造的高线性度PT、CT,才能保证变送器测量的线性度。
c. PT、CT的输出负载要小,由于变送器使用的PT、CT的铁芯截面受体积限制都比较小,因此随着输出负载的增大,其非线性将急剧增加,一般PT的输出电流应《1mA,CT的输出电流应《10mA(一般为5mA左右),取样电阻应《200Ω。
2.电量转换电路
这部分是电量变送器的核心,通过它把不同的被测电量转换成相应的输出电量,相应于不同的被测电量而采用不同的转换电路。具体电路将在后面再详细介绍。
3.输出电路
这部分电路的作用是输出变送器需要输出的电量,它的基本要求是:
a.具有一定的带负载能力;
b.恒定输出。即在一定的负载范围内,其输出值不受负载变化的影响,即在电压输出时,应为恒压输出,电流输出时应为恒流输出。
输出的一般电路如下:
电压输出图
电流输出图
图中N为运算放大器,V为晶体三极管,扩大运算放大器的输出电流。
有的变送器有可能该电路和电量转换电路合并在一起。
二、交流电压、电流变送器
交流电流、电压变送器除了输入隔离部分有差别外,其他电路基本一样,输入隔离部分的电路如下:
电压变送器
电流变送器
二者之间的差别为电压变送器采用PT,其二次输出电压可直接输入下一级转换电路,而电流变送器是采用CT,其二次输出电流先经R变换为电压后再输入下一级转换电路,其好处为只要选择合适的二次电流值和R,后面的电路可和电压变送器完全一致。
电压、电流变送器的测量目前大都采用平均值转换,其基本电路如下:
这实际上是一个精密全波整流电路,它的特点是线路简单和线性度好,但缺点是波形失真度对它的影响较大。这在某些波形失真较大的电路中(如负载为可控硅等),和采用真有效值变换的测量仪器比对时,有可能产生一定的误差,这在现场在线校验这类变送器时,如果标准表是真有效值变换的其误差就有可能和实验室测试的结果不一致,因此对该类变送器的校准,应在波形失真度《0.2%的电源上进行。
三、有功功率变送器
1.单相有功功率变送器
这类变送器虽然应用较少,但是它是三相有功/无功功率变送器的基础,因此先介绍它的基本原理,它的基本电路如下:
电路中,PT、CT和电压电流变送器一样,作为输入隔离,PT的二次电压和CT的二次电流经变换成电压后都输入至乘法器,使乘法器输出的直流电压
式中:Up --- 乘法器输出电压
Un --- PT二次电压
Ui --- CT二次电流经R变换后的电压
φ--- Uu和Ui的夹角
就达到了功率变换为直流电压的目的,目前,功率变送器中大都采用的是时分割乘法器。这类乘法器的特点是:测量频率较低(一般《1kHz),但是其线性度相当好,最高可达到0.01%以上,这对于电网电量的测量是相当合适的。实际上,高标准的功率、电能标准器也大都采用了这类乘法器,电路中的相位补偿电路就是对变送器功率因数影响的补偿,一般都用RC元件加在电压回路中。
2.三相有功功率变送器
三相有功功率变送器又可分为三相三线(三相二元件)和三相四线(三相三元件)二类。其测量原理是相同的,仅是其接线方式不同。
三相有功功率变送器实际上是把二个(二元件)或三个(三元件)单相功率变送器的输出电压相加,从而得到三相功率变送器,其基本电路如下:
四、无功功率变送器
无功功率的测量,根据接线方式的不同,一般可分跨相法和90°移相法两种。
电量变送器 相关文章:
- LT3751如何使高压电容器充电变得简单(08-12)
- 三路输出LED驱动器可驱动共阳极LED串(08-17)
- 浪涌抑制器IC简化了危险环境中电子设备的本质安全势垒设计(08-19)
- 严酷的汽车环境要求高性能电源转换(08-17)
- 适用于工业能源采集的技术 (08-10)
- 单片式电池充电器简化太阳能供电设计(08-20)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...