微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 电动汽车充电电路的设计分析—电路图天天读(289)

电动汽车充电电路的设计分析—电路图天天读(289)

时间:10-25 来源:网站整理 点击:

简单的单级功率变换,但也存在一些缺陷,如半导体器件承受的电压应力较高、输出电压调节性能差,输出电流纹波大。

  为了降低器件的开关损耗,可以采用图5所示的软开关电路。给MOSFET设计的关断延时确保了IGBT的ZVS关断。在电流上升模式中,MOSFET分担了输出滤波电流,其电压应力为IGBT的一半。从而,可以采用600V的器件。同时,因关断损耗的降低,开关频率得以提高。

  另一个降低器件电压定额的方案是采用两级变换结构。前级PFC校正环节可以采用带有软开关功能的Boost变换器,允许高频工作。后级DC/DC功率变换级,可以采用半桥串联谐振变换器,提供高频电流链。图7给出了适用于充电模式的两级功率变换电路结构图。

  

  图7 充电模式采用的两级功率变换电路结构

  若输入电网电压是AC 115V,为了降低DC/DC变换器的电流定额,输出电压可以提升到DC 450V。这样Boost级功率开关管可以采用500~600V的MOSFET,半桥变换器的开关器件可以采用300~400V的MOSFET。由于采用半桥工作,感应耦合器可以采用1∶2的匝比。若原边绕组为4匝,则副边绕组为8匝。Boost开关管的电流定额是30A,而半桥变换器开关管的电流定额是 20A。

  编辑点评:本文根据SAEJ-1773对感应耦合器的规定,对电动汽车供电电池的充电器进行了讨论。给出了充电模式的电路拓扑分析图,最后给出了分别适合于不同充电等级的备选变换器拓扑方案。
电子发烧友《智能医疗特刊》,更多优质内容,马上下载阅览

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top