微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 智能硬件电子电路设计图集锦TOP7

智能硬件电子电路设计图集锦TOP7

时间:04-08 来源:网站整理 点击:

断,从而达到温度的恒定控制。

  系统的定标

  首先用高精度电阻箱代替铂电阻传感器Pt100对测量系统进行定标。根据式1所示的铂电阻传感器Pt100电阻和输出电压之间的关系,通过改变电阻箱的取值来设定相对应的测试温度点标称值,经过测量系统、A/D采样的计算,得到测量温度显示值。根据初测数据对测量电路、补偿电压进行校准后,完成对系统的定标工作。

  系统实测

  将铂电阻传感器Pt100接入测量系统,并置入高精度恒温箱中(温控精度0.01℃)进行整个温度测量系统定标测量。测量时要注意恒温箱的密封,以提高环境温度稳定性;恒温箱温度稳定后,每隔1min对同一温度点进行20次测量。由表1中数据可见,测量系统的最大误差为0.009℃,说明Pt100 铂电阻传感器的定标误差较小,精度也较高,能满足高精度温度测量系统的测量要求,但温度高端误差较大,可能与恒温箱温度控制精度有关,有待于进一步定标。

  

  本文提出了基于FPGA的无人飞行器温度巡检装置的设计方案,该方案中所设计的无人飞行器温度巡检装置利用FPGA快速性、可并行性、延时固定性等特点,能够快速,准确的检测无人机的各部件温度。通过实验验证,系统的最大误差不超过0.01度,完全满足无人飞行器对温度采集的要求。

  TOP5 四轴飞行器三相六臂全桥驱动电路

  四轴飞行器是近来在专业与非专业领域都非常火爆的技术产品。下面这篇文章针对四轴飞行器无位置传感器无刷直流电机的驱动控制,设计开发了三相六臂全桥驱动电路及控制程序。设计采用ATMEGA16单片机作为控制核心,利用反电势过零点检测轮流导通驱动电路的6个MOSFET实现换向;直流无刷电机控制程序完成MOSFET上电自检、电机启动软件控制,PWM电机转速控制以及电路保护功能。该设计电路结构简单,成本低、电机运行稳定可靠,实现了电机连续运转。近年来,四轴飞行器的研究和应用范围逐步扩大,它采用四个无刷直流电机作为其动力来源。无刷直流电机为外转子结构,直接驱动螺旋桨高速旋转。

  无刷主流电机的驱动控制方式主要分为有位置传感器和无位置传感器的控制方式两种。由于在四轴飞行器中的要求无刷直流电机控制器要求体积小、重量轻、高效可靠,因而采用无位置传感器的无刷直流电机。本文采用的是朗宇X2212 kv980无刷直流电机。无刷直流电机驱动控制系统包括驱动电路和系统程序控制两部分。采用功率管的开关特性构成三相全桥驱动电路,之后使用DSP作为主控芯片,借助其强大的运算处理能力,实现电机的启动与控制,但电路结构复杂成本高,缺乏经济性。直流无刷电机的换向采用反电势过零检测法,一旦检测到第三相的反电势过零点就为换向做准备。反电势过零检测采用虚拟中性点的方法,通过检测电机各相的反电势过零点来判断转子位置。而基于电机三相绕组端电压变化规律的电机电流换向理论,可以大大提高系统控制精度。

  本文无刷直流电机的驱动电路采用三相六臂全桥电路,控制电路的管理控制芯片采用 ATmega 16单片机实现,以充分发挥其高性能、资源丰富的特点,因而外围电路结构简单。无刷直流电机采用软件启动和PWM速度控制的方式,实现电机的启动和稳定运行,大大提高四轴飞行器无刷直流电机的调速和控制性能。

  三相六臂全桥驱动电路

  无刷直流电机驱动控制电路如图1 所示。该电路采用三相六臂全桥驱动方式,采用此方式可以减少电流波动和转矩脉动,使得电机输出较大的转矩。在电机驱动部分使用6个功率场效应管控制输出电压,四轴飞行器中的直流无刷电机驱动电路电源电压为12 V.驱动电路中,Q1~Q3采用IR公司的IRFR5305(P沟道),Q4~Q6为IRFR1205(N 沟道)。该场效应管内藏续流二极管,为场效应管关断时提供电流通路,以避免管子的反向击穿,其典型特性参数见表1.T1~T3 采用PDTC143ET 为场效应管提供驱动信号。

  

  表1 MOSFET管参数

  由图1 可知,A1~A3 提供三相全桥上桥臂栅极驱动信号,并与ATMEGA16单片机的硬件PWM驱动信号相接,通过改变PWM信号的占空比来实现电机转速控制;B1~B3提供下桥臂栅极驱动信号,由单片机的I/O口直接提供,具有导通与截止两种状态。

  

  图1 无刷直流电机三相六臂全桥驱动电路

无刷直流电机驱动控制采用三相六状态控制策略,功率管具有六种触发状态,每次只有两个管子导通,每60°电角度换向一次,若某一时刻AB 相导通时,C 相截至,无电流输出。单片机根据检测到的电机转子位置,利用MOSFET的开关特性,实现电机的通电控制,例如,当Q1、Q5 打开时,AB 相导通,此时电流流向为电源正极→Q1&rarr

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top