微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 电源管理电路图设计TOP11

电源管理电路图设计TOP11

时间:10-27 来源:电子发烧友网整理 点击:

关频率2.5MHz,I2C接口,主要应用在单个锂电池的 3.3V稳压器,智能手机和平板电脑,手持设备和POL稳压器。本文介绍了ISL9110和ISL9112主要特性, 方框图,几种典型应用电路图,以及ISL9110IRTNZ/IRT7Z/IRTAZ-EVAL1Z评估板主要特性,电路图和相应的材料清单与PCB元件布局图。

  ISL9110和ISL9112主要特性:接受输入电压高于或低于调节输出电压,自动和巴克之间的无缝过渡,提高模式,输入电压范围:1.8 v至5.5 v,输出电流:1.2,效率高:95%,35μa静态电流轻载效率最大化,2.5 mhz切换频率最小化外部组件的大小,选择Forced-PWM模式和外部同步,I2C接口(ISL9112),充分保护过流,过热和欠压,小3 mmx3mm TDFN包。

  

  图2. ISL9110IRTAZ 典型应用电路图

  

  图3. ISL9112典型应用电路图

  

  图4. ISL9112IRTNZ 典型应用电路图

  TOP6 评估板主要电路设计

  评估板主要特性:ISL9110IRTAZ 高效b调节器调节输出电压,输入额定电压1.8 v至1.8 v,电阻器可编程输出电压3.3 v,输出电流和输出电压3.3 v,2.5 mhz切换频率,跳线选择EN(启用/禁用),跳线选择模式(auto-PFM / forced-PWM),领导指标PG和蝙蝠状态输出,连接器,测试点和跳投,便于评估。

  

  图5.ISL9110IRTAZ-EVAL1Z评估板电路图

  

  图6. ISL9110IRTNZ-EVAL1Z 评估板电路图

  

  图7. ISL9110IRT7Z-EVAL1Z 评估板电路图

  不稳定的电压会给设备造成致命伤害或误动作,影响生产,造成交货期延误、质量不稳定等多方面损失。同时加速设备的老化、影响使用寿命甚至烧毁配件,使业主面临需要维修的困扰或短期内就要更新设备,浪费资源;严重者甚至发生安全事故,造成不可估量的损失。Intersil公司的ISL9110和 ISL9112是高度集成升降压开关稳压电源设计性能大大改善,在电源行业有很大的发展前景。

  TOP7 高性价比的电源适配器应用电路设计

  本文所讨论的低功率电源适配器主要针对输出功率5~15瓦的电源系统。主要有两类方案,即集成PWM控制器方案和分立PWM控制器方案。图1是集成PWM控制器的典型应用图,U1采用DIP-8封装,内部集成了PWM控制器和功率MOSFET。变压器输入侧电路包括:由X电容CX和共模电感L- COM组成的输入滤波电路,由BD组成的整流桥电路,由U1组成的控制及功率电路。变压器输出侧包括:二极管D10等组成的输出整流滤波电流;固定电压基准U2等组成的稳压反馈电路。该方案由于功率器件和PWM器件集成在一个封装内,故集成度较高,但散热设计难。图2是分立PWM控制器方案,U1多采用 SOIC-8或SOT23-6, 内部只含PWM控制器,功率器件Q1是MOSFET。其余外围电路与集成PWM控制器方案相同。

  

  以上两类方案的PWM控制器部分的共性是:多内置固定开关频率、斜波补偿、轻载时自动跳频、负载短路开路保护,这些都满足了5W~15W消费类电源系统的低成本、低待机能耗、高可靠性要求。以上两种方案及其拓展成的多数应用方案在DVD电源、电脑辅助电源、电池充电器、网络通讯设备领域等占有统治地位。

  

  无论是图1的集成PWM控制方式还是图2的分立PWM控制器,都只能与功率器件MOSFET配套使用,故成本较高;为了符合电磁兼容要求,其应用系统的输入部分还必须含有X电容和共模电感L-COM组成的输入滤波电路,成本也高。粗略估算,PWM控制(包括功率MOSFET)及输入滤波电路的成本是整个系统元件成本的35%,这些都不符合消费类电子低成本的趋势要求。

  因此,从PWM控制器的设计概念上寻求突破,同时最大程度地提高集成度,才能有效减少外围元件数,从而最终降低系统成本,这正是新推出的PWM控制器AP3710的方案设计思路。AP3710是一款射极驱动模式的PWM控制器芯片,启动时首先从驱动端OUT获得初始电流,供电源端VCC,系统开始工作。系统正常工作时,从变压器的辅助绕组获得足够的能量维持VCC电压。 UVLO比较器确保了AP3710在一定的开启电压和关断电压区间内可靠运行。内置振荡器的频率固定,但开关频率在一定范围抖动,改善了系统EMI。斜波补偿功能提高了系统的稳定性。短路保护功能的实现方式是:当系统输出短路时,VCC端必将跌落至关断其门槛以下,此时芯片并不立即从启动,而是从通过放电模块将VA端的电位拉低,使AP3710的VCC端得不到能量供应,从而有效降低了系统短路时的输入功率。

  AP3710的电源适配器方案

  

图4是AP3710的适配器方案原理图。AP3710(U1)的脉冲输出脚与三极管Q1的发射极直接相连,电网上电后,U1的OUT脚首先从Q1的发射极获得能量,实现启动。C6、R7和C5是环路补偿元件,再配合

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top