微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 电路图天天读(26):快速充电电路图集锦

电路图天天读(26):快速充电电路图集锦

时间:09-17 来源:网络整合 点击:

压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003 的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。而下方的 1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。

  TOP7 bq2004搭建的镍氢电池快速充电电路模块

  电路原理:用bq2004搭建了一个镍氢电池的快速充电电路,给10节镍氢电池充电,快充电流最大为 2.25A,电路如图所示。是电路开始对电池进行快速充电后,很快就跳到充满的状态了(不管电池是否充满)。快速充电模式持续时间很短,均没有超过封锁时间;电路中热敏电阻部分接入了6.2K定值电阻,可以保证任意时刻引起的快速充电终止;电路是根据DV2004S1的电路设计的,没有MTP23P06V 这款PMOSFET,用AO4606的N管代替了2N7000。

  

   脉冲式快速充电器电路

  电路原理:如图为脉冲式快速充电器电路。本镍镉电池充电器采用大电流脉冲放电的形式,以达到快速充电的效果并能减少不良的极化作用,增加电池使用寿命。脉冲充电器的电路结构由电路滤波、一次整流滤波、PWM变换、二次整流滤波、脉冲电路、充放电电路和反馈控制。该电路与普通开关电源电路相比,多了脉冲产生电路与充放电电路部分。为了提高该电路的变换效率,PWM控制采用贵生动力专用研发的集成控制器件;脉冲产生电路采用了555时基电路与十进位计数器/分频电路。DC/DC变换部分是使用贵生动力专用研发的反激式电路。除了PWM控制本身的特性,如工作在准谐振模式、空载降频、动态自供电、无载功耗低等特色外,均与常规反激式电路相似。

  

  TOP8 基于单片机的锂电池快速充电电路模块

  单片机电路

  单片机芯片为Atmel公司的AT89C52单片机,B1为蜂鸣器,单片机的P2.0口输出控制光耦器件,可以在需要时及时关断充电电源。

  

  图2 52单片机电路原理图

  充电电路控制模块

  充电状态输出引脚/CHG经反相器74LS04后与单片机的P3.2口连接,触发外部中断。PNP为P沟道的场效应管或三极管。D1为绿色发光二极管,处于通电状态时亮;D2为红色放光二极管,电源接通时亮。R1设置充电电流的电阻,阻值为2.8千欧,设置最大充电电流为500mA;C2为设置充电时间的电容,容值为100μF,设置最大充电时间为3小时。

  

  图3 充电电路控制部分

  TOP9 电动车快速充电器电路

  电路原理:AC220V市电经变压器T1降压,经D1-D4全波整流后,供给充电电路工作。当输出端按正确极性接入设定的被充电瓶后,若整流输出脉动电压的每个半波峰值超过电瓶的输出电压,则可控硅SCR经Q的集电极电流触发导通,电流经可控硅给电瓶充电。脉动电压接近电瓶电压时,可控硅关断,停止充电。调节R4,可调节晶体管Q的导通电压,一般可将R4由大到小调整到Q导通能触发可控硅(导通)即可。图中发光管D5用作电源指示,而D6用作充电指示。

  

  电路特点:输出电压设定好后(例如36V),若被充电瓶极板脱落断开,造成某组电池不通,或出现短路,则电瓶端电压即降低或为零,这时充电器将无输出电流;若被充电瓶电压偏离设定电压,如设定电压为36V,误接24V、12V、6V电瓶等,充电器也无输出电流,若设定为24V误接为36V电瓶,由于充电器输出电压低于电瓶电压,因而也不能向电瓶充电:充电器两输出端若短路时,由于充电器中可控硅SCR的触发电路不能工作,因而可控硅不导通,输出电流为零:若使用时误将电瓶正负极接反,则可控硅触发电路反向截止,无触发信号,可控硅不导通,输出电流为零:采用脉冲充电,有利于延长电瓶寿命。由于低压交流电经全波整流后是脉动直流,只有当其波峰电压大于电瓶电压时,可控硅才会导通,而当脉动直流电压处于波谷区时,可控硅反偏截止,停止向电瓶充电,因而流过电瓶的是脉动直流电;。快速充电,充满自停。由于刚开始充电时电瓶两端电压较低,因而充电电流较大。当电瓶即将充足时(36V电瓶端电压可达44V),由于充电电压越来越接近脉动直流输出电压的波峰值,则充电电流也会越来越小,自动变为涓流充电。当电瓶两端电压被充到整流输出的波峰最大值时,充电过程停止。经试验,三节电动车蓄电池36V(12V/12Ah三节串联),用该充电器只需几个小时即可充满;电路简单、易于制作,几乎不用维护及维修。

   采用单个智能电路的智能

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top