音频放大电路图锦集
1、同相音频放大器原理图
工作原理如图所示:输入的音频微弱信号经电容cl耦台到前髓运霄放大器A的1脚进行放大.其@脚送出的信号与两个并联对称、平衡的功放三极管VTl、VT2射极同相输出。
其中,c2、R4、RP构成负反馈电路,以提高输出信号波形的稳定性。c3为补偿高频电容。C4、c5为电源交流分量滤波电容。电阻R8~Rlj为三极管 vTl、vT2的偏置电阻。低频端距响好坏取决于输出端电容量C8、c9的容量大小,同时也起隔直作用,调节电位器RP可调增益达10dB以上。
2、使用运放推动的A类耳机放大器电路图
电路图见图一,耳机右路元件的标号是在左路元件标号的基础上加100,例如右路的R1写成R101,C2写成C102等。
这里的放大器实质上是一个提升放大器,它的运算放大器和输出级都是甲类的,為实现直接藕合,电路採用了双电源。
首先,输入信号先通过隔直电容C1藕合到音量控制电位器VR1上,VR1的阻值较大,使声音在低音区(即2HZ)的-3DB点上。
对大多数信号源而言,如果它的信号不在电容上產生任何附加直流电压,那麼该电容可以不要。当然,為了安全最好保留该电容,否则输入端的直流偏移将导致的输出端上產生较大的偏移。
如果出现了直流偏移,数值较小时,会在输出级上增加电流消耗,產生失真;数值较大时,耳机将会被损坏。
音量控制VR1决定了放大器的输入阻抗為47KΩ,因為IC1的输入级是一个结型场效应管(J.F.E.T),其输入阻护大约為10-12MΩ。
目前市场上有大量的运算放大器,可广泛用於音频电路,但经过大量实验只有TL072性能最好,价格合理,噪音低,回应速率為13V/mS,并具有很高的电流吸收能力。
儘管这些元件具有上述诸多特点,实际上这些元件却很少运行在最佳条件下。例如,运算放大器的输出级工作电流為2MA,只工作的甲 乙类,负载小於10KΩ。其解决办法是在输出端和电源负极之间连接一个适当阻值的电阻,这样就强迫将其调至甲类。
图中的运算放大器IC1於同相输入放大器,将输入信号从可变电位器VR1的滑动触头连至其同名端(+)。电阻R3和R4有两个功能:第一功能前面已经说过,就是强制运算放大器工作在甲类状态;第二个功能是為TR1和TR2所组成的输出级提供偏压。
互补电晶体TR1和TR2採取发射极跟随器工作方式,这样,从基极看其输入阻抗较高,而输出极的输出阻抗则较低。
在电路设计中,电阻R5和R6是非常重要的,因為R5和R6与TR1和TR2的发射极串联,產生局部负反馈,使输出级工作在线性状态。
R5.R6和R3上的电压降也很重要,它使得输出级进入甲类工作状态,负反馈从电阻R5/R6的连接点通过电阻R2反馈到IC1的反相输入端(引脚 2)。放大器的电压增益决定於电阻R2和R1的比值(10倍),电容C2用来隔直流,使其交流负反馈系数為R5/R6,而直流负反馈则是百分之百。放大器的输出端直接与耳机相连。
在介绍了放大器的电路之后,注意力应转移到电源上来。变压器有两个6V次级线圈,它们可為桥式整流器提供交流电。通过整流后,用电解电容C3和C4滤波。这是一个很基本的稳压电路,当然為了求得更佳的效果你也可以选择更好的电源供电方式,相信在其他的电路一可以容的找到。
3、LM4906音频功率放大器典型应用电路
如图所示为LM4906音频功率放大器的典型应用电路(MSOP封装)。音频信号输入后,经过C2耦合加到放大器的反相输入端(4脚),功率放大后从 Vo1(5脚)和Vo2(8脚)以电桥输出的形式加到扬声器。LM4906内部有两个放大器,第一个放大器的增益可由增益选择端(3脚)控制,3脚为低电平时增益是6dB,3脚为高电平时增益是12dB。第二个放大器增益由内部两个20kΩ电阻固定为1。LM4906以电桥差动形式输出时,功率放大器的增益Av为2&TImes;20kΩ/20kΩ或2&TImes;40kΩ/20kΩ。当1脚为逻辑低电平时放大器微功率关断,为逻辑高电平时放大器全功率工作。
4、TDA7266双路音频立体声放大器电路图
TDA7266是双路音频立体声放大器,以MULTIWATT形式封装,专门为音乐设备和彩色电视机的高质量音频放大电路而设计。
一、特点
1、宽供电电压范围(3-18V)
2、短路保护
3、热保护
4、待机特性
5、静音功能
6、开关机静噪
7、外围元件少
二、内部框图
引脚 符 号 功 能
1 LO+ 左声道声音正极输出
2 LO- 左声道声音负极输出
3 VCC1 +16V供电
4 RIN 右声道声音输入
5 NC 空脚
6 MUTE 静音
7 ST-BY
- 各种耳机放大器应用电路分析(09-27)
- 耳机放大器架构设置全新解决方案(05-08)
- LT3751如何使高压电容器充电变得简单(08-12)
- 三路输出LED驱动器可驱动共阳极LED串(08-17)
- 浪涌抑制器IC简化了危险环境中电子设备的本质安全势垒设计(08-19)
- 严酷的汽车环境要求高性能电源转换(08-17)