微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 带可编程增益跨阻放大器和同步检波器的双通道色度计

带可编程增益跨阻放大器和同步检波器的双通道色度计

时间:10-07 来源:ADI 点击:

  电路功能与优势

  图1所示电路是一个双通道色度计,集成调制光源发射器和同步检波器接收器。电路以三种不同的波长测量样本与参考容器的吸收光线之比。

  该电路针对许多化学分析和环境监控仪器提供有效的解决方案,这些仪器仪表用于通过吸收光谱测量浓度和表征材料。

  光电二极管接收器调理路径包括可编程增益跨阻放大器,用于将二极管电流转换为电压,并允许分析光吸收情况大不相同的不同液体。16位Σ-Δ型模数转换器(ADC)提供额外的动态范围,确保宽范围光电二极管输出电流具有足够的分辨率。

  使用调制光源和同步检波器而非恒流(直流)源可消除环境光线和低频噪声产生的测量误差,并提供更高的精度。

  

  图1. 带可编程增益跨阻放大器和锁定放大器的双通道色度计(原理示意图:未显示所有连接和去耦)

  电路描述

  AD8618 四通道运算放大器形成三个简单的电流源,以恒定电流驱动LED。 EVAL-SDP-CB1Z产生5 kHz时钟,通过单刀双掷(SPDT)开关 ADG633调制一个LED,以便打开或关闭其电流源的基准电压。将另外两个LED的电流源设为0 V可在不用时将其关闭。

  波束分离器将一半光线通过样本容器发送,另一半通过参考容器发送。取决于每个容器中介质的类型和浓度,容器可吸收不同量的光。每个容器另一侧的光电二极管产生少量电流,数量与接收到的光量成比例。

  每条通道的第一级包含 AD8615 运算放大器,该运算放大器配置为跨阻放大器,可将光电二极管输出电流转换为电压。 AD8615作为光电二极管放大器,是一个不错的选择,因为它具有极低的输入偏置电流(1 pA)、输入失调电压(100 μV) 和噪声(8 nV/√Hz)。虽然信号随后经交流耦合,在本级中尽量减少直流误差依然很重要,这样可避免损失动态范围。运算放大器输入偏置电流乘以输出端的反馈电阻值,作为失调电压。带增益输出端上的运算放大器输入失调电压取决于反馈电阻和光电二极管分流电阻。此外,流经光电二极管的任何运算放大器输入电压失调都会导致光电二极管暗电流的增加。

  图2显示带单反馈电阻的典型跨导放大器及其理想传递函数。

  

  图2. 跨导放大器传递函数

  由于某些受测溶液可能具有非常强的吸收特性,因此有时需要使用大反馈电阻以测量光电二极管产生的极小电流,同时要能够测量与高度稀释溶液相对应的大电流。为了解决这一难题,图1中的光电二极管放大器含有两个不同的可选增益。其中一个增益设为33 kΩ,另一个设为1 MΩ。当单SPDT开关连接运算放大器的输出端以便开关反馈电阻时, ADG633的导通电阻可能导致跨阻增益误差

  为了避免这个问题,图3显示了一种较好的配置,在该配置中,反馈环路内部的ADG633选择所需电阻,同时第二个开关将系统下一级与所选反馈环路相连。放大器输出端的电压为:

  VTIA OUTPUT = IPHOTODIODE &TImes; RFEEDBACK

  而非

  VTIA OUTPUT = IPHOTODIODE &TImes; (RFEEDBACK + RON ADG633) ADG633位于反馈环路之外,该级的输出阻抗即为 ADG633的导通电阻(通常 52 Ω),而非与闭环工作时运算放大器输出有关的极低输出阻抗。

  请注意,出于稳定性考虑,要求使用反馈电容 CFx,以补偿总输入电容(二极管电容加上运算放大器输入电容)以及反馈电阻 RFx产生的极点。有关此分析的详情,请参见传感器信号调理实用设计技巧中的第5部分。

  哪怕诸如 AD8615 这类最好的轨到轨输出放大器都无法完全摆动输出至电轨。此外, AD8615上的输入失调电压可以为负,虽然其数值非常小。 ADR4525基准电压源将光电二极管和放大器偏置到2.5 V,而非使用负电源确保放大器不会被削波,从而可驱动至0 V。电路板的模拟和数字部分采用 5 V线性调节器供电。

  

  图3. 可编程增益跨导放大器

  光电二极管放大器输出电压可在2.5 V至5.0 V范围内摆动。对于33 kΩ范围而言,2.5 V输出范围对应满量程光电二极管的电流值为75.8 μA。对于1 MΩ范围而言则对应2.5 μA。使用1 MΩ的增益设置进行操作时,重要的是保护光电二极管不受外界光线影响,以防放大器饱和。虽然下文所述的同步整流器可极大地衰减任何不与LED时钟同步的频率,但如果上一级被衰减,则它无法正常发挥作用。每通道的增益设置可通过 EVAL-SDP-CB1Z板独立选择。

下一级是简单缓冲交流耦合滤波器。滤波器截止频率设为 7.2 Hz;它移除所有输出失调电压,并衰减白炽灯和荧光灯以及其它所有进入光电二极管的杂散光造成的低频光污染。同时, ADR

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top