微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > STM32MCU的太阳能街灯设计

STM32MCU的太阳能街灯设计

时间:06-04 来源:网络整理 点击:

切换蓄电池充电和放电模式;最后就是提供监控保护、温度监测、状态输出和用户控制输入检测(DIP1~4)等功能。MCU 的选择最主要是满足ADC、GPIO和外部中断的需要,不需要单纯追求速度。表1列出了实际电路中MCU 外围设备的使用情况,考虑到以后扩展的需要,主控芯片使用ST M32F101RXT6 (意法半导体最新款ST M32系列MCU ,采用Cortex-M3内核)。

  表1: MCU 外设分配。

  控制器辅助电源直接从蓄电池变换而来,蓄电池输入通过线性电源(L78L12)得到12V,供给逻辑电路和PWM开关信号放大;3.3V通过12V接开关电源(L5970D)而来,主要给MCU 和周边电路供电,之所以用开关电源是为了提高转换效率(减少蓄电池耗电)以及在以后扩展系统时可以提供足够负载,当然,为了减少成本,完全可以用线性电源来实现。

  控制器主要功能

  控制器的主要功能包括两个方面:蓄电池充电以及蓄电池给LED 供电。

  1.蓄电池充电

  当系统检测到环境光充足,控制器就会进入充电模式。蓄电池充电有两个比较重要的电压值:深度放电电压和浮充充电电压。前者代表在正常使用情况下蓄电池电能被用完的状态, 而后者则代表蓄电池充电的最高限制电压,这些参数应该从蓄电池产品手册上可以查到。在设计电路中针对12V蓄电池,分别设置深度放电电压为11V和浮充充电电压为13.8V(皆为在室温条件下的电压值,软件中这两个值增加了相应的温度补偿),具体充电模式如表2所示。

  控制器主要功能

  控制器的主要功能包括两个方面:蓄电池充电以及蓄电池给LED 供电。

  1.蓄电池充电

  当系统检测到环境光充足,控制器就会进入充电模式。蓄电池充电有两个比较重要的电压值:深度放电电压和浮充充电电压。前者代表在正常使用情况下蓄电池电能被用完的状态, 而后者则代表蓄电池充电的最高限制电压,这些参数应该从蓄电池产品手册上可以查到。在设计电路中针对12V蓄电池,分别设置深度放电电压为11V和浮充充电电压为13.8V(皆为在室温条件下的电压值,软件中这两个值增加了相应的温度补偿),具体充电模式如表2所示。

  表2: 蓄电池充电模式

  从表2中可以看到涓流充电模式和恒流充电模式会用到MPPT算法,MPPT算法有很多种方式可以实现,业界有不少的论文对此进行了探讨,总的来说各有优劣,设计电路中采用相对简单的扰动观察法来实现(Perturbance and ObservaTIon)。这个控制方法的基本思想是通过增大或者减少充电电路开关信号PWMCHG占空比,然后观察输出功率是变大还是变小,以此来决定下一步是增大还是减少占空比。由于太阳能 板的输出变化相对比较缓慢,而且是单极点,所以这种方式还是能收到比较好的效果。

  2.蓄电池放电

  当系统检测到周围环境光线不足时,就会进入蓄电池给LED 供电模式。LED 电流通过高位电流检测芯片(TSC101AILT)采样送回MCU ,由MCU 通过调整开关信号PWMDRV占空比来获得恒定输出电流。为了达到节能的目的,LED 的恒定电流值会根据系统检测的环境光强度来调整:当环境光由亮变暗时,系统的输出电流也会相应从小到大;当环境光完全暗下来时,系统的输出电流也达到预设的最大值。除了由环境光控制LED 的输出,用户还可以通过设定开关DIPl~4的状态来开启时间控制功能, 系统会根据DIP1~4的设定组合来控制LED 从亮5分钟到12小时不等。

  此外,为了提高系统的可靠性,设计电路添加了针对太阳能 电池板、蓄电池和LED 等一系列软硬件的保护功能。而基于此系统平台,还可以从添加智能发光二极管工作模式、增加通讯模块和采用风光互补系统三方面进一步优化系统性能。

  本文结论

  太阳能 -LED 路灯不仅能利用清洁免费的太阳能 以及高效环保的LED 给道路带来照明,而且同时可以减少温室气体排放,实现绿色照明的目的。本街灯系统已经在意法半导体大楼入口处成功实施,所有街灯系统都已运行半年,工作情况正常。随着太阳能 板的价格进一步降低和LED 性价比的提高,相信这个系统会得到越来越广泛的应用。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top