直流电机和三相电机都是什么,工作原理分析,直流电机和交流电机的区别是什么?
什么是直流电机?
直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。
直流电机工作原理:
电动势产生:当电枢被原动机以恒速驱动,按逆时针方向转动时,用右手定则可以判定,线圈ab和cd边切割磁力线产生的感应电动势的方向,则在负载与线圈构成的回路中产生电流Ia,其方向与电动势方向相同。电流由电刷A流出,由电刷B流回。
换向:当电枢转到右图所示位置时,线圈中感应电动势的方向发生了改变,但由于换向器随同一起旋转,使得电刷 A总是接触 N极下的导线,而电刷B总是接触S极下的导线,故电流仍由A流出 B流回,方向不变。
什么是三相电机?
三相电机,是指当电机的三相定子绕组(各相差120度电角度),通入三相交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路)。
载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。电动机也称(俗称马达),在电路中用字母"M"(旧标准用"D")表示。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源,电机系全封闭、外扇冷式、鼠笼型结构。
三相电机工作原理:
当电动机的三相定子绕组(各相差120度电角度),通入三相交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。3.1异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。3.2但异步电动机的定子主磁通却并不是静止的,而是以一定的转速旋转着的。3.3产生转子电流的必要条件是转子绕组切割定子磁场的磁力线。因此,转子转速必须低于定子磁场的转速(即为"异步")。
直流电机和交流电机的区别:
我用最简洁最易懂的方式来说一下直流电机和交流电机的工作原理和区别。
上图就是直流电动机最简单的物理模型。
工作原理:
1. 直流电源电流顺着电源正极流到了左边的电刷上面,电刷和换向器相互摩擦,电流经过左边的换向器(也叫换向片,这个电机有左右两个换向片)流进线圈,从线圈的右边流出来,经过右边的换向片和右边的电刷流回到电源的负极,形成了闭合回路。
2. 由于线圈处在主磁极(图中的N和S)的磁场中,线圈会受到电磁力的作用,线圈的两个边由于电流的方向不同(左边的电流向里流,右边的向外流),所以两个线圈边受到大小相同方向相反的电磁力,这两个电磁力刚好形成了电磁转矩,在电磁转矩的拉动下,线圈开始转动了。直流电机中线圈嵌放在转子槽中,电动机就开始转动了。
3. 左右换向片跟着转轴转动,而电刷固定不动,转动一圈以后,右边的线圈到了左边,左边的线圈到了右边,但是由于换向片的存在,现在处在左边的线圈内的电流方向和原来处在左边的线圈变的电流的方向一样流向里,所以受到的电磁力方向不变,右边也一样。所以从空间上看,在相同位置的线圈边受的电磁力方向是一直不变的,这就保证了电机的循环转动。
4. 但是一个线圈,由于这个线圈转到不同位置时磁场是不相同的,导致了线圈所受的电磁力也一直在变,所以线圈转起来不稳定,忽快忽慢。所以可以通过多安装几个线圈来保证线圈受力均匀和稳定。
于是就有了这样的,
甚至这样的电机模型。
再说外面的两个磁极,其实是有励磁线圈产生的电磁铁,小电机中有永磁铁,稍微大一点的都会用电磁铁。
模型是模型,但真实的电机转子是这个样子的。
再说交流电机:
交流电机分同步和异步电机,同步主要用作发电机,异步主要是电动机。我主要说一下异步电动机吧,由于异
- 混合集成电路的电磁兼容(EMC)设计 (10-07)
- 高速DSP系统的电路板级电磁兼容性设计(10-23)
- 正确选择和使用电磁兼容性元器件(12-17)
- PCB布线技术中的抗干扰设计(03-08)
- 电磁兼容技术综述及开关电源中的EMC技术应用(06-17)
- UPS不间断电源的电磁兼容符合性设计(08-26)