USB PD应用中的安全设计
USB type-c和USB PD的应用可以说才刚刚开始,现在就谈它的安全问题似乎有点多余,因为多数人都还没有遇到,不会把这个问题放在心上,但对真正的业内人士来说,这绝不是一个毫无意义的话题。
相比过去的USB应用来说,USB type-c接口和USB PD协议显然要复杂得多,能力也强得多,其实现形式也多种多样,这就带来不同产品之间的兼容性问题。2015年,相关组织和企业在美国进行了一次所谓的"插拔大会",会上把各家带来的产品放在一起进行相互的插拔试验以检验其兼容能力,结果在离开的时候只有三家公司的6个样品还活着,其他的样品都在插拔过程中死掉了,这就给众多的参与者提了一个醒,在参与这样的应用时应该把安全放在第一位,否则,即使你的产品功能再好,一样会在使用中很快死掉,最终也会退出市场,甚至可能让你赔得倾家荡产。
USB PD的应用给使用USB type-c接口的应用带来了一个很大的变化,就是其接口上传递的电源电压可以高达20V,电流可高达5A,最多可以传送100W的功率给受电端使用,大大拓展了USB接口的应用范围。但是,USB type-c接口上的VBUS和CC端之间的距离太近了,它们实际上就紧靠在一起,如下图所示:
这是USB Type-C插座的脚位分布图,其中的VBUS就是最高电压达20V(现在已经扩展到21V)的承载端。CC1和CC2都是CC的备选端,其选中与否由插头插入的方向决定,被选中者作为CC使用,成为设备与电缆及另一设备通讯交流的渠道,其信号的最高电压为5V,剩下的另一个端子就成为VCONN端,供电端借此端子向电缆的内部电路供电。
由于CC上的最高电压为5V,很多接口器件就会采用比5V工作电压稍高的设计和制程来制作,一旦VBUS和它短路,高电压就会进入该端子,对内部电路造成不可恢复的损伤,从而造成设备故障。下面这幅图算是对这个问题的形象化描述:
一个标准的USB Type-C接口控制器是非常简单的,它要做的事情基本上就是用上拉电阻标识本端口所在的设备为供电端、用下拉电阻标识本端口所在的设备为受电端、为电缆提供VCONN电源、识别电流供应/通过能力、确定电缆连接关系以及在完成接入识别以后开启VBUS通道等,由于不涉及提高VBUS电压,VBUS上的电压最多就是5V,所以采用低压制程是完全可以的,其电路联通以后的模型大致示意如下:
下面是它们的具体实现示意图:
这是供电端的,
这是受电端的。如果一台设备既可以做供电端,又可以做受电端,则其电路模型就是这样的了:
这种设备可以担任两种角色,实用中具体采用哪一种需要双方进行协商或是人工进行选择,这就要进行通讯,通讯是经由CC通道完成的,其上传递的信息以BMC双相编码的方式进行,双方沟通的语言就是USB PD规范所定义的协议了。
借助USB PD协议,供需双方不仅可以商定各自的角色,也可以商定实际需要的电压和电流的大小,因而为实际的应用提供了巨大的方便,但也带来了隐患:如果VBUS电压已经提高了而CC端的耐压电压只比5V高一点点,一旦两者之间发生短路,损害的出现就是自然的了。
为了避免CC端因为和VBUS短路而造成损害,立锜科技的所有USB Type-C接口控制器和其它集成了该部件的器件都采用了高压工艺来提高CC端的耐压,它们全部可以承受20V以上的电压冲击。下面的波形图展示了CC在工作过程中和20V VBUS发生短路的情形,由于CC端具有20V以上的耐受能力,短路状况消除以后,信号又回到了正常状态:
CC端为什么会和VBUS短路呢?除了上面提到的两者相临以外,这些因素也是需要考虑到的:使用者可能随意地插拔、扭动接插件,有的人甚至可能是用很粗鲁的方式来对待它们,这都很容易直接造成短路事故或是破损,这种情形在接插件和电缆老化以后就更容易发生,因而是必须提早进行防范的。下图所示资料就说明了立锜产品的防护能力:
在一个实际的系统中,通常不会只是存在我们已经谈及的电路部分,MCU的存在几乎是必然的事情,实际上USB PD的应用策略通常都是由它来制定的。如果MCU在发出指令使USB Type-C接口输出20V的电压以后的某个时刻就死掉了,事情将会如何发展?这种情形你在使用电脑的时候一定遇到过,这不就是"宕机"吗?
一种很合理的推测是你的受电端可能在这个时候发生变化,例如它只需要一个5V的电压了,这既可能发生在一台设备的内部,也可能发生在设备更换的时候,而处理电源输入的电路可能就只能接受5V电压,20V的电压一定会让它死掉,所以这个"宕机"的状况很可能是一个灾难的开始。
对于这种问题,立锜的USB Type-C/P
- 从1.8V到USB的多轨电压转换和管理(08-17)
- 具USB OTG和过压保护的紧凑型电源管理器(08-17)
- USB供电的单节镍氢电池开关模式充电器电路设计(02-12)
- 具有USB OTG和过压保护的紧凑型电源管理器的实现(10-17)
- 低导通损耗的USB电源开关的设计(12-01)
- 一种满足USB规范的电源开关设计方案(02-13)