微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 都知道石墨烯电池充电快持续用电时间长,但石墨烯电池的原理是什么?你造吗?

都知道石墨烯电池充电快持续用电时间长,但石墨烯电池的原理是什么?你造吗?

时间:03-20 来源:网络整理 点击:

幅度的提升。在500 mA/g 的电流密度下循环300次后,容量为1200 mAh/g。

  

  图3 互相连接的MnO2NFs@GF 结构充放电行为示意图

  石墨烯与硅基、锡基材料复合

  硅基、锡基材料拥有很高的理论比容量,但Li+在其中嵌入、脱出时,电极材料体积变化明显,反复充放电后电极材料容易粉化脱落,从而降低电池容量。

  对于SnO2来说,碳纳米材料的报复可有效解决其体积膨胀的问题,且阻止材料纳米颗粒团聚的同时提高了材料导电性,从而发挥出高容量的潜能。例如石墨烯包覆夹层结构SnO2材料[5],其独特的"三明治"结构提高了电极材料的稳定性且能最大化利用SnO2分子的比表面积,避免了SnO2分子的团聚,缓解了体积膨胀。石墨烯夹层的引入加强了纳米分子间的相互联系,从而避免了导电添加剂和粘结剂的使用。石墨烯/SnO2球状颗粒复合材料的首次放电容量为1247 mAh/g,较石墨烯/SnO2纳米片层材料提升了41.06%。

  

  图4 夹层状石墨烯包覆SnO2 球体合成流程示意图

  硅基类材料的理论比容量高达4200 mAh/g,其较低的放电电压平台,高自然储量,使其成为具有极好应用前景的负极材料。但其在充放电过程中体积效应严重,造成材料的循环稳定性差。同锡基材料类似,石墨烯的引入可有效控制硅基材料的体积膨胀,使Si 负极材料倍率性能得到一定的改善。

  石墨烯包覆纳米硅(GS-Si)复合材料不仅容量高,而且具有较好的循环性能。从其扫描电镜及透射电镜图中可以看到,石墨烯构成具有内部空腔的三维立体导电网络,将硅粉很好地包裹在其内部空腔内。该材料在200 mA/g 电流密度下进行恒流充放电测试,30次循环后容量仍能保持在1502 mAh/g,容量保持率高达98%[6]。

  

  图5 浴花形石墨烯包覆纳米硅(GS-Si)复合材料扫描电镜图及透射电镜图

  但石墨烯材料的化学惰性使得其与Si基材料之间的作用力很弱,在经过数次的充放电循环后,Si-C结构会出现了粉化和崩塌。有研究发现石墨烯中那些由于晶体生长、高能粒子轰击或化学处理所产生的单空位缺陷、双空位缺陷以及Stone-Wales 缺陷可以大幅度提高石墨烯/Si分子间的结合能,使复合材料的稳定性更好。刻意地制造这类缺陷会提高石墨烯材料与Si之间的结合力,而且空位缺陷可以提供额外的储锂活性位点,从而更好地提高电极材料的容量。另一种解决这一问题的方法是在Si分子、石墨烯片层间生长纳米碳,这种方式使得石墨烯纳米片和Si 基间搭建了稳定的导电桥梁,这种稳定的导电网络结构既减少了Li+嵌入、脱出过程中产生的体积效应,避免电极材料的破碎,又保持了SEI 膜的稳定性,在充放电过程中避免了过高的容量衰减,对Si基材料容量的提高有很大帮助。

  2. 石墨烯复合正极材料

  石墨烯与聚阴离子型正极材料的复合

  尖晶石型的LiMn2O4以及橄榄石型的LiFePO4是目前实际应用较为广泛的锂电池正极材料。但这类材料的电子传导性差、Li+迁移过慢、大倍率充放电下电极与电解液间的电阻率大。一些研究中,引入石墨烯材料为解决这些问题带来了可行的途径。使用石墨烯改性的LiFePO4和LiMn2O4,电子的传导率和倍率性能有了明显提升。主要原因是石墨烯材料的使用大大缩短了锂离子在正极材料中的扩散路径,同时复合材料内部的高空隙率也为锂离子提供了大量的可嵌入空间,储锂容量和能量密度得到提升。例如,碳包覆LiFePO4/石墨烯纳米晶片(图6)在17 mA/g 的电流密度下充放电循环100 次后,可逆储锂容量为158 mAh/g,库伦效率高于97%。在60C下充放电后的可逆容量为83 mAh/g,该材料的倍率性能很优异[7]。

  

  图6 C-LFP/GNs 复合材料合成机理示意图

  石墨烯与钒系材料复合

  钒系材料作为锂电池正极材料成本低廉、电化学活性较高、能量密度高,受到了广泛的关注和大量工作者的深入研究。然而,钒系材料倍率性能较差、电荷转移电阻较高以及晶体结构容易粉化等缺陷制约其在实际应用领域的发展。

  其中VO5理论比容量(440 mAh/g)远高于现在商业化的锂离子电池的正极材料,是具有很大潜力的锂离子电池的正极材料。将VO5纳米颗粒与石墨烯复合来解决钒系材料电导率低、锂离子传输速率慢的的研究较多。引入石墨烯材料同时可以有效地解决其纳米颗粒之间团聚问题,从而更有效地发挥VO5原有的高容量潜力。V2O5是另一种备受关注的钒系材料,与VO5原理相同,石墨烯的引入同样可以提高其倍率性能。V2O5量子点/石墨烯纳米复合材料(VQDG),如图7所示。在电流密度为50、100、200、500 mA/g 充放电检测,容量保持率分别为100%、96.92%、89.16%以及65.72%[8]。

  

图7 V

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top