锂离子电池新型负极材料的改进与研究
料,因具有如下优点:
1)钛酸锂在脱嵌锂前后几乎"零应变(脱嵌锂前后晶胞参数"a从0.836nm仅变为0.837nm);
2)嵌锂电位较高(1.55V),避免"锂枝晶"产生,安全性较高;
3)具有很平坦的电压平台;
4)化学扩散系数和库伦效率高。
钛酸锂的诸多优点决定了其具有优异的循环性能和较高的安全性,然而,其导电性不高、大电流充放电时容量衰减严重,通常采用表面改性或掺杂来提高其电导率。
如肖等以Mg(NO3)2为镁源,通过固相法制备了Mg2+掺杂的钛酸锂,表明掺杂Mg2+并没有破坏钛酸锂的尖晶石晶体结构,且掺杂后材料的分散性更佳,其在10C放电倍率下的比容量可达到83.8mAh/g,是未掺杂材料的2.2倍,且经过10次充放电循环后容量无明显衰减,经交流阻抗测试表明,掺杂后材料的电荷转移电阻明显降低。
Zheng等通过高温固相法,分别采用Li2CO3和柠檬酸锂作为锂源,制备了纯相的钛酸锂和碳包覆的钛酸锂,
实验表明,经碳包覆的钛酸锂具有较小的粒径和良好的分散性,表现出更优的电化学性能,主要归因于碳包覆提高了钛酸锂颗粒表面的电子电导率,同时较小的粒径缩短了Li+的扩散路径。
碳材料
3.1碳纳米管
碳纳米管是一种石墨化结构的碳材料,自身具有优良的导电性能,同时由于其脱嵌锂时深度小、行程短,作为负极材料在大倍率充放电时极化作用较小,可提高电池的大倍率充放电性能。
然而,碳纳米管直接作为锂离子电池负极材料时,会存在不可逆容量高、电压滞后及放电平台不明显等问题。
如Ng等采用简单的过滤制备了单壁碳纳米管,将其直接作为负极材料,其首次放电容量为1700mAh/g,可逆容量仅为400mAh/g。
碳纳米管在负极中的另一个应用是与其他负极材料(石墨类、钛酸锂、锡基、硅基等)复合,利用其独特的中空结构、高导电性及大比表面积等优点作为载体改善其他负极材料的电性能。
如郭等采用化学气相沉积法,在膨胀石墨的孔洞中原位生长碳纳米管,合成了膨胀石墨/碳纳米管复合材料,其首次可逆容量为443mAh/g,以1C倍率充放电循环50次后,可逆容量仍可达到259mAh/g。
碳纳米管的中空结构及膨胀石墨的孔洞,提供了大量的锂活性位,而且这种结构能缓冲材料在充放电过程中产生的体积效应。
3.2石墨烯
2004年英国Manchester大学研究者首次发现石墨烯材料,并获得诺贝尔奖。
石墨烯是一种由碳六元环形成的新型碳材料,具有很多优异的性能,如大比表面(约2600m2g-1)、高导热系数(约5300Wm-1K-1)、高电子导电性(电子迁移率为15000cm2V-1s-1)和良好的机械性能,被作为锂离子电池材料而备受关注。
石墨烯直接作为锂离子电池负极材料时,具有非常可观的电化学性能。
Wang等采用水合肼作为还原剂、制备了丛林形貌的石墨烯片,其兼具硬碳和软碳特性,且在高于0.5V电压区间,表现出电容器的特性。
石墨烯负极材料在1C放电倍率下,首次可逆容量为650mAh/g,100次充放电循环后容量仍可达到460mAh/g。
石墨烯还可作为导电剂,与其他负极材料复合,提高负极材料的电化学性能。
如Zai等采用超声分散法制备了Fe3O4/石墨烯复合材料,在200mA/g的电流密度下放电,经过50次循环后,容量为1235mAh/g;在5000和10000mA/g电流密度下放电,经过700次循环后,容量分别能达到450mAh/g和315mAh/g,表现出较高的容量和良好的循环性能。
前景展望
近年来,锂离子电池负极材料朝着高比容量、长循环寿命和低成本方向进展。
金属基(锡基、硅基)材料在发挥高容量的同时伴随着体积变化,由于金属基合金材料的容量与体积变化成正比,而实际电芯体积不允许发生大的变化(一般小于5%),所以其在实际应用中的容量发挥受到了较大的限制,解决或改善体积变化效应将成为金属基材料研发的方向。
钛酸锂由于具有体积变化小、循环寿命长和安全性好等显著优势,在电动汽车等大型储能领域有较大的发展潜力,由于其能量密度较低,与高电压正极材料LiMn1.5Ni0.5O4匹配使用,是未来高安全动力电池的发展方向。
碳纳米材料(碳纳米管和石墨烯)具有比表面积、高的导电性、化学稳定性等优点,在新型锂离子电池中具有潜在的应用。然而,碳纳米材料单独作为负极材料存在不可逆容量高、电压滞后等缺点,与其他负极材料复合使用是目前比较实际的选择。
- 石墨烯、纳米银线等触控新材料崛起:应用分析(02-21)
- 石墨烯「凉被」有助于电晶体散热(07-17)
- 石墨烯那么火,在哪些领域应用得多?(03-28)
- 石墨烯:产业升级的“加速器”(02-28)
- 石墨烯电池引起热议:或是“炒作”?(02-17)
- 是什么制约了石墨烯电池产业化市场的应用?(02-11)