微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 气体传感器分类及原理详解

气体传感器分类及原理详解

时间:02-14 来源:传感器技术 点击:

附或反应,引起载流子运动为特征的电导率或 伏安特性或表面电位变化而进行气体浓度测量的。

表面电荷层模型工作示意图

金属氧化物半导体在空气中被加热到一定温度时,氧原子被吸附在带负电荷的半导体表面,半导体表面的电子会被转移到吸附氧上,氧原子就变成了氧负离子,同时在半导体表面形成一个正的空间电荷层,导致表面势垒升高,从而阻碍电子流动。

在敏感材料内部,自由电子必须穿过金属氧化物半导体微晶粒的结合部位(晶界)才能形成电流,由氧吸附产生的势垒同样存在于晶界而阻碍电子的自由流动,传感器的电阻即缘于这种势垒,在工作条件下当传感器遇到还原性气体时,氧负离子因与还原性气体发生氧化还原反应而导致其表面浓度降低,势垒随之降低,导致传感器的组织减小。

从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。

主要优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。

主要不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。

气相色谱式分析仪

气相色谱式分析仪是基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。

工作时,从进样装置 定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶 解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。

根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。

浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。

质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。最常用的检测器有TCD热导检测 器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。

主要优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。

主要不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。

目前已有采用计算机控制仪表系统的操作和进行数据运算的气相色谱仪,并可进行组分越限报警,还具有自动检查仪表 故障等功能。

随着健康问题越来越得到关注,大气质量、室内空气质量、车内空气质量监控数据则成为人们随时随地想看到的数据,气体传感器在这一过程中无疑将扮演更加重要的角色。

作为一种将某种气体体积分数转化成对应电信号的转换器,气体传感器的用途十分广泛。现实生活中,实际上不论是在民用、工业还是环境检测等方面,气体传感器发挥着巨大的作用。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top