无人飞行器应用中基于SDR的高分辨率、低延迟视频传输
器的RF功率保持恒定。在天线增益相同时,较大的RF发射功率将能达到更远处具有相同接收灵敏度的接收器,尽管如此,最大发射功率应符合FCC/CE辐射标准。
此外,载波频率也会对传输距离产生影响。当波在空间中传播时,会发生散射损耗。自由空间损耗可由下式确定
其中R为距离,λ为波长,f为频率,C为光速。因此,在相等的自由空间距离上,频率越高,损耗越大。例如,相较于2.4 GHz,载波频率为5.8 GHz时在相同传输距离上的衰减将超过7.66 dB。
RF频率和频率切换
AD9361/AD9364输出覆盖70 MHz至6 GHz的可编程频率范围。这将能满足大多数NLOS频率应用,包括不同类型的特许执照和免执照频段,比如1.4 GHz、2.4 GHz和5.8 GHz。
2.4 GHz频段已广泛用于Wi-Fi、Bluetooth以及物联网 (IoT) 短程通信,因此变得越来越拥挤。该频段用于无线视频传输和控制信号将会增大信号干扰的几率和不稳定性。从而导致无人飞行器陷入不良情况,这些情况往往十分危险。使用频率切换技术保持干净的频率通道,将确保数据和控制连接更可靠。当发射器觉察到拥挤频率时,它会自动切换到其他频带。例如,两架同时使用相同频率并且近距离工作的无人飞行器将会相互干扰对方的通信。自动切换LO频率并重新选择频带将有助于维持稳定的无线链路。在上电期间自适应选择载波频率或通道是高端无人飞行器的一个杰出特性。
跳频
广泛应用于电子对抗 (ECM) 的快速跳频技术也有助于避免干扰。通常情况下,如果我们想要跳频,PLL需在程序执行后重新锁定。该过程包括写频率寄存器,然后经过VCO校准时间和PLL锁定时间,因此跳频间隔约为几百微秒。图7显示了跳频发射器的LO频率从816.69 MHz跳变至802.03 MHz的例子。AD9361用于正常频率变化模式,发射器RF输出频率从814.69 MHz跳变至800.03 MHz,参考频率为10 MHz。跳频时间通过E5052B测得,如图7所示。根据图7b,VCO校准和PLL锁定时间约为500 μs。信号源分析仪E5052B可用来捕捉PLL的瞬态响应。图7a显示了瞬态测量的宽带模式,而图7b和7d以显著高分辨率显示了跳频时的频率和相位瞬态测量值。6图7c则显示了输出功率响应。

图7. 频率从804.5 MHz跳变至802 MHz,历时500 μs。
500 μs对于跳频应用来说是一段很长的时间间隔。不过,AD9361/ AD9364支持一种快速锁定模式,通过将合成器编程信息集(称为 配置文件)存入器件寄存器或基带处理器的存储空间,可使该过 程比正常频率变化更快。图8显示了通过快速锁定模式使频率从 882 MHz跳变至802 MHz的测试结果。根据图8d的相位响应,该时 间可缩短至20 μs以下。相位曲线参照802 MHz的相位绘制。由于频 率信息和校准结果均已保存在配置文件中,因此省去了SPI写入时 间和VCO校准时间。我们可以看到,图8b显示了AD9361/AD9364的 快速跳频性能。

图8. 在快速锁定模式下,频率在20 μs内从882 MHz跳变至802 MHz。
物理层的实现—OFDM
正交频分多路复用 (OFDM) 是一种信号调制技术,可将高数据速率 调制流划分到多个缓慢调制的窄带密集的子载波上。因此,信号 不易受到选择性频率衰减的影响。其缺点是峰均功率比较高,并 且对载波偏移和漂移比较敏感。OFDM广泛应用于宽带无线电通 信物理层。OFDM的关键技术包括IFFT/FFT、频率同步、采样时间同步、码元/帧同步。IFFT/FFT可通过FPGA以最快方式实现。子载波间 隔的选择也十分重要。该间隔不应太小,应足以对抗运动通信中 的多普勒频移;但也不应太大,以便在有限的频率带宽内携带更 多码元符号,从而提高频谱效率。COFDM是指编码技术和OFDM调 制的结合。COFDM对信号衰减的承受能力较强,并且具有前向纠 错 (FEC) 功能,因此可以从任何移动对象发送视频信号。其编码技 术将会增大信号带宽,但此代价通常是值得的。
通过将MathWorks基于模型的设计和自动生成代码工具与强大的 Xilinx? Zynq SoC以及ADI公司的集成式射频 (RF) 收发器相结合,SDR 系统的设计、验证、测试和实现可以比以前更高效,进而提高无线 电系统的性能并缩短上市时间。
相较于Wi-Fi具有哪些优势?
配备Wi-Fi的无人飞行器可以很容易地连接到手机、笔记本电脑和 其他移动设备,因此使用起来非常方便。但是,对于无人飞行器应 用中的无线视频传输,FPGA和AD9361解决方案具有很多胜过Wi-Fi 的优点。首先,AD9361/AD9364在物理层可通过捷变频率切换和快 速跳频避免干扰。而大多数集成Wi-Fi芯片仍工作于拥挤的2.4 GHz 频带,没有频带选择机制来确保更稳定地无
- 出色的无人飞行器解决方案(09-04)
- 工用无人飞行器解决方案详解(07-02)
- 全新低成本预装影音解决方案 带来卓越的平台优势(05-29)
- 基于SDRAM文件结构存储方式的数据缓存系统(09-08)
- 基于SDRAM文件结构存储的数据缓存系统FPGA实现(10-25)
- 高分辨率视频图像处理中SDRAM控制器的设计(02-10)
