微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 如何扩展 FPGA 的工作温度

如何扩展 FPGA 的工作温度

时间:04-26 来源:网络 点击:

的函数。该功耗因内核或 I/O 的耗电而产生。

  当热量在空间中的某一点产生时,它将向周边传递,导致周边区域升温。如果周边区域不是热源,则热量会散开,温升有限。只要等上足够长的时间,温度最终会在整个器件中均衡化。如果周边区域是其他热源构成的,因为每个热源都会给另一个热源带来热量,温度就会净增长。

  如果许多热源集中在一小块面积上,则这个面积的温度会上升得比其他地方快,导致热点产生。

  由于器件的结温受限,实际上最热点的温度不应超过最大结温。在知道器件的功耗和封装的温度后,所有我们能估计的平均结温。

  最后一个热源与电流在导体中流动产生的焦耳效应有关。

  如果超过最高温度会发生什么情况?

  随着工作温度升高,器件的使用寿命会下降,部件会老化得更快。某些老化过程,如电迁移和电腐蚀只会在较高温度下发生。电迁移发生在有湿气和电场存在的条件下。此时导体的原子

  

  图 3 - 环境温度与结温之间的关系。其中 Tj 代表结温,Ta 代表环境温度,Rth、package 代表结点与封装外表面间的热阻,Rth、ambient 代表封装外表面和环境空气间的热阻

  (如果没有散热器或空气流时为 0)且 P 为器件耗散的功率。

  会以离子形态从他们的初始位置移动,在另外的地方复位,留下一个空隙。这个空隙会减小该位置导体的有效宽度,造成该位置电场增强,从而诱发更多的电迁移。这种链式反应会在原子移走的位置

  数字器件有三个功耗来源:动态、静态和焦耳效应。

  

  图 4 - 热吸收等式,其中Q 表示能够吸收的最大热量。

  m 代表吸热物质的质量,c 代表吸热物质的常数,ΔT代表吸热物质在开始时的环境温度和最终温度之间的温差。该公式仅适用于不可再生性吸热材料和待吸收热量为净量的条件。这是条件不现实,但这个公式已经体现出压力(质量)、材料类型(c)和外部温度在冷却效率中所起到的作用。

  中的代码并测量了器件壳体的总功耗和温度。有时如果峰值温度较低,提高器件平均温度也可接受。我们还在加速老化测试中评估了使用寿命。

  我们的下一个设计选择是为器件使用设定限制。为减少器件耗散的热量,我们尽可能地避免使用逻辑单元和存储器。器件未使用得到部分会

  导致裂隙(开路)或在原子重定位的地方导致短路(树突)。为数不多的几层水分子足以引发金属的离子化过程,触发电迁移。这一现象会随着温度升高明显严重化。

  像铁生锈这样的腐蚀现象涉及湿气和有害气体。半导体材料封闭在其保护性封装中。这种封装一般对湿气有高吸收性,但制作所用的材料不会轻易地产生腐蚀性离子溶液。这种腐蚀大多数情况下会给引线框和封装接线造成不利影响。最重要的有害材料是硅钝化层中所含的磷,以及半导体制造工艺或封装工艺所残留的部分污染物。在运输、焊接和装配过程中接触人体皮肤和其他化学品是导致污染的有害原子的其他可能来源。

  当异质材料连接在一起时,较便宜的材料相对于较贵的材料容易发生腐蚀(电化腐蚀)。这类型的腐蚀是随时间推移性能降低的又一个原因。

  在超过结温温度的情况下,无法保证器件的使用寿命,可能会大幅度缩短。如果温度持续增长,该器件可能会立即失效。

  器件的性能也取决于速度。器件在较高温度下速度会下降,因此它们的最大时钟速率会降低。

  之所以把 Spartan-6 XA(汽车级)FPGA 的最高温度限定为 125℃ 是出于最低使用寿命要求(可靠性考虑)和有保证的时钟频率能力(性能要求)。其他原因包 RAM 单元漏电和因这种漏电造成的位错误。

  多种解决方案

  为克服我们的油井摄像头设计的各类难题,我们实施了多种解决方案。

  其中最重要的决定之一是选择大小合适的器件。越大型的器件的静态功耗越大,但有利于器件的散热,避免形成热点。经认证用于汽车用途的器件即使在高温下也具有较长的使用寿命,因此对于使用寿命要求不高的工业应用而言,更是一款合适的解决方案。我们已经评估了 XA(车用)系列的 LX25 和 LX45 器件

  消耗静态功耗,但不会消耗动态功耗。

  我们还施加了时钟门控。因为动态功耗取决于时钟速率,我们可以使用时钟门控抵消未被使用的模块的动态功耗。如果时钟树未触发,器件该部分的功耗就会降低。

  我们还可以将我们使用的 I/O 数量保持在最低水平。这样也可以降低 I/O 模块的功耗。

  因此,通过把部分 I/O 用作虚地,我们缩短了器件内部电流的传输距离,从而降低了电源走线的焦耳效应。虚地也有助于把热量传递到地面。

因为我们不想使用所有的 I/O 和所有的逻辑单元,我

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top