微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 石墨烯电池/燃料电池/空气电池等热门电池技术讲解

石墨烯电池/燃料电池/空气电池等热门电池技术讲解

时间:04-06 来源:雷锋网 点击:

"飞轮"这一储能元件,已被人们利用了数千年,主要是利用它的惯性来均衡转速和闯过"死点",由于它们的工作周期都很短,每旋转一周时间不足一秒钟,在这样短的时间内,飞轮的能耗是可以忽略的。现在想利用飞轮来均衡周期长达12~24小时的能量,飞轮本身的能耗就变得非常突出了。能耗主要来自轴承摩擦和空气阻力。人们曾通过改变轴承结构,如变滑动轴承为滚动轴承、液体动压轴承、气体动压轴承等来减小轴承摩擦力,通过抽真空的办法来减小空气阻力,轴承摩擦系数已小到10-3。即使如此微小,飞轮所储的能量在一天之内仍有25%被损失,仍不能满足高效储能的要求。

  近年来,飞轮储能技术取得突破性进展是基于下述三项技术的飞速发展:一是高能永磁及高温超导技术的出现;二是高强纤维复合材料的问世;三是电力电子技术的飞速发展。

  超导磁悬浮原理是这样的:当我们将一块永磁体的一个极对准超导体,并接近超导体时,超导体上便产生了感应电流。该电流产生的磁场刚好与永磁的磁场相反,于是二者便产生了斥力。由于超导体的电阻为零,感生电流强度将维持不变。若永磁体沿垂直方向接近超导体,永磁体将悬空停在自身重量等于斥力的位置上,而且对上下左右的干扰都产生抗力,干扰力消除后仍能回到原来位置,从而形成稳定的磁悬浮。若将下面的超导体换成永磁体,则两永磁体之间在水平方向也产生斥力,故永磁悬浮是不稳定的。

  利用超导这一特性,我们可以把具有一定质量的飞轮放在永磁体上边,飞轮兼作电机转子。当给电机充电时,飞轮增速储能,变电能为机械能;飞轮降速时放能,变机械能为电能。飞轮储能大小除与飞轮的质量(重量)有关外,还与飞轮上各点的速度有关,而且是平方的关系。因此提高飞轮的速度(转速)比增加质量更有效。但飞轮的转速受飞轮本身材料限制。转速过高,飞轮可能被强大的离心力撕裂。故采用高强度、低密度的高强复合纤维飞轮,能储存更多的能量。目前选用的碳纤维复合材料,其轮缘线速度可达1000米/秒,比子弹速度还要高。正是由于高强复合材料的问世,飞轮储能才进入实用阶段。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top