微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 单晶多晶组件CTM差异性,你知道吗?

单晶多晶组件CTM差异性,你知道吗?

时间:02-29 来源:光能杂志 点击:

在光学增益,在光照射在电池、焊带或者背板上时,由于组件玻璃对光线的反射,会有光线再次照射在电池上,增加组件的对光线的吸收利用。

  多晶量子效率本身偏低,所以经过封装以后,多晶组件的光学增益要多于单晶组件,这样多晶组件在380nm-450nm及900nm-1200nm波段的封装损失也会少于单晶组件。

  以上光学因素决定了单晶组件CTM损失要多于多晶组件。但是没有更好的解决单晶组件光学损失的方法。

  3.2、B-O复合损失

  由表1的实验结果,不难发现单晶电池LID较多晶电池严重,这主要是因为单晶原料和多晶原料的生长环境不同所导致。常规单晶生长使用石英坩埚,石英坩埚在高温时与硅溶液反应,生成SiO2,这样使硅棒中氧的含量有一定幅度提升,从而增加了硼-氧对的数量,硼氧对在经过光照处理时会形成少子寿命低的BO5,影响电池片的输出功率,最终增加了单晶硅电池的LID光衰值。

  

  多晶采用铸锭的方式生长,主要工艺步骤为加热,融化,长晶,退火,冷却步骤。多晶铸锭时坩埚底部热量通过冷却装置把热量带走。坩埚缓慢下降,从而是硅锭离开加热区,多晶铸锭用的坩埚为石英陶瓷坩埚,在铸锭过程中引入的氧碳杂质较少,这样在光照条件下产生的硼氧复合就会减少,因此多晶硅电池的LID光衰值相对偏低。这样导致了多晶CTM损失要低于单晶。要改善单晶CTM可以想办法减少单晶产品的LID光衰情况。

  

  减少单晶原料的衰减可以考虑一下方法,A.模仿多晶铸锭工艺生产单晶。B.采用磁控拉晶工艺或着区熔单晶工艺,减少氧含量的引入,提高单晶硅棒的品质。C.由掺硼改为掺镓,避免硼氧复合的出现。

  4、结论

  本文简单描述了导致组件CTM损失的可能因素,重点分析了造成单晶组件和多晶组件CTM差异的原因。光学损失和B-O复合之间的差异决定了多晶组件的CTM损失要少于单晶组件,对于硼氧复合损失可以想办法改善,但对于光学损失的差异,针对单晶没有更好的解决方法。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top