一种改进的无线传感器网络非测距定位算法
上限设置为6即可,既能最大化地利用多跳信标节点的位置信息,又不会消耗过多的能量用于通信。
图3 不同跳数的信标节点之间的中垂线
如图4所示,一跳的信标节点能给待定位节点提供大致的待定位区域,二跳信标节点一般情况下能将待定位区域的面积缩小75%左右,三跳及三跳以外的信标节点能在二跳的基础上继续将待定位区域面积缩小20%左右。
图4 不同跳数的信标节点对定位的帮助
3 仿真验证
本文使用Java语言开发了一个仿真平台,分析检验ASBL算法的各种性能指标。设置传感器节点随机部署在200 m×200 m的区域内,节点的通信半径默认为30 m,表1中的数据是仿真平台的各项参数信息。
表1 仿真平台默认参数信息
3.1 节点密度对定位精度的影响
本组仿真中,将节点随机部署,信标节点密度设为10%,节点数量在100~500之间变化,节点通信半径覆盖不规则度为0,其余参数保持不变。通过图5可以看出,随着节点密度的增大,各算法定位精度都有所提升,当节点达到400个时,各算法性能趋于稳定。因为能够使用一跳范围外的信标节点和未知节点协助定位,ASBL算法定位精度比DV-Hop算法提高25%左右,比APIT算法提高15%左右,比SBL算法提高12%。
图5 节点密度对定位精度的影响
3.2 节点通信半径对定位精度的影响
设置节点总数为300个,信标节点密度为10%,节点通信半径从10~50 m递增,其余参数按照默认设置,重复10次仿真。由图6可以看出,通信半径为10 m时,ASBL算法的定位精度要比SBL算法高75%,这是因为ASBL能充分利用一跳范围外的信标节点。通信半径为50 m时,ASBL算法的定位精度比SBL算法仅高1.4%,这是因为当节点通信半径增加时,原来位于一跳范围外的信标节点此时会位于一跳范围内。
图6 节点通信半径对定位精度的影响
结语
非测距的定位技术以所需传感器节点能量少、硬件简单,成为目前无线传感器网络定位技术的主要研究方向。本文提出了ASBL算法,针对SBL算法作了改进,以提高算法良好的适应性和健壮性。恰当的定位算法是无线传感器网络正常工作的基础,针对非测距定位算法的研究将 会朝着降低能量消耗和提高定位精度的方向发展,从而极大地提高网络的生存能力和工作效率。
- 放电少、放置10年依然可用的锂亚硫酰氯电池(07-31)
- 面向国防应用的安全和可靠无线传感器网络(11-06)
- 无线传感器可放置在任何地方,以在长距离提供低功耗和可靠的无线传感器网络(12-08)
- 可靠、低功耗无线传感器网络适用于物联网: 使无线传感器像网络服务器一样易于使用(05-06)
- Q&A:能量采集知多少 凌力尔特技术讲堂(二)(05-05)
- 为工业物联网正确选择无线网格网络协议以实现新应用(04-03)