神经网络协同处理器降低视觉处理功耗
套件
Thompson指出,由于CNN存在一定的复杂度,就算采用了EV硬体,为特定视觉处理应用推出适合的演算法组合仍然是一项困难的任务。为了协助开发商减轻一些责任,Synopsys提供了一套完整的工具库与参考设计,让开发人员能更有效率地建构、除错、配置,以及利用业界标准且开放源码的嵌入式视觉工具链OpenCV和OpenVX,为其嵌入式视觉系统实现最佳化。
该最佳化的工具套件内含ARC EV处理器,以及超过2,500项OpenCV功能,可实现即时电脑视觉。此外,该工具套件还提供具有43种标准电脑视觉核心的OpenVX架构,可实现边缘侦测、建立影像金字塔以及光流评估,这些功能均已为执行于EV处理器实现最佳化。
Thompson还表示,由于EV处理器是可编程的,因而可加以训练用于支援任何物件检测图,以及导入新的OpenVX核心定义。一次OpenVX的运行时间可将排列的核心执行分配在EV处理器的多个执行单元上,从而简化了该处理器的编程。
在用于设计EV核心时,可透过ARChitect工具发表与配置ARC EV处理器。该工具合成了可整合于任何SoC设计的RTL,以支援任何主处理器,包括ARM、英特尔、Imagination MIPS与PowerPC等。为了进一步加速软体开发,虚拟原型机将可用于EV处理器,以及支援基于FPGA的原型设计,在制造晶片之前实现硬体和软体协同设计。
"嵌入式视觉是一个快速变化的环境,"Thompson说,"现在,CNN看来是最佳的发展方向。但是,未来也可能发生改变。除了找到能够满足当今应用的成本和功耗需求的解决方案以外,我们希望为开发人员提供一种更有效的方法,在中期改变其设计任务,而无需回到起点重新设计。"
- 嵌入式视觉设计要创新,选择FPGA成关键(07-20)
- 嵌入式视觉技术--潜力巨大,有待开发(07-20)
- 未来的使用者界面--带你走进嵌入式视觉的“前世今生”(07-20)
- 嵌入式视觉系统基本概念以及传感器的选择(11-22)
- 基于DSP和机器人的声控系统设计与实现(02-21)
- 虚拟现实系统都有哪些核心技术?(08-06)