采用多模设计无线充电兼顾效率与便利性
兼容不同无线充电技术优势的多模方案将成未来主流。针对当前无线充电技术尚无统一标准,且各标准阵营在技术上各有优缺点,业界已兴起采用多模方案以解决不同标准间的兼容问题,并让无线充电产品可提供兼具充电效率与空间自由度的使用体验。
无线充电技术的解决方案,包含磁感应(MI)和磁共振(MR) 两种技术,不论消费市场的走向为何,无线充电已成为必然趋势。接下来的几年内,无线充电主要将由手机厂商推动,并开始渗透手机市场;随后,生态系统健全的计算机市场将会跟进,并带来无线充电技术的成长,自此开始,无线充电将发展为支持手机及计算机的解决方案。当前已有许多针对无线电源采用率及潜在总体有效市场(TAM)之报告与研究,但要提供准确的市场信息并不容易,因为在这些预测中,采用率和技术的选择是关键参数。磁感应技术主要有两种标准:无线充电联盟(WPC)和电力事业联盟(PMA),这两种标准皆已相当成熟,且消费市场已有多种使用中的产品。
无线电力联盟(A4WP)是磁共振的第一个标准,值得注意的是,英特尔(Intel)的磁共振无线充电技术是为自有的超轻薄笔记本电脑和生态系统设计;其他如在工业及军事领域已建立其地位的PowerbyProxi和WiTricity也开始进入消费市场。
要解答标准和解决方案对无线充电技术未来方向的影响,首先须了解MI和MR技术上的不同,完全理解并熟悉应用/系统的需求后,就可选择特定应用的解决方案。
解决电池容量瓶颈 无线充电应用抬头
移动解决方案率先于消费市场采用无线充电技术。因为有长程演进计划(LTE)技术,通讯速度和带宽至少在未来几年内不会遇到瓶颈。方便性是消费市场中推动移动解决方案的关键要素之一,不同的移动解决方案,如手机、平板计算机、多媒体播放器和移动电视等,需要不同的变压器和连接器接口,因此要为移动装置充电,须要携带很多连接器和变压器,若有通用的无线变压器加上完整基础设施和生态系统,就可满足此需求,在汽车、咖啡店、图书馆、餐厅、火车、飞机、办公室、会议厅等地点都能随时无线充电,可带来众所期盼的方便性。
每2年移动解决方案的外观、性能和各种功能便会升级,而这些升级迫使电源需求、连接器和接口产生变化,因此需要新的变压器。这些变化和升级也因淘汰和弃置现有变压器而造成浪费,若能免去各种变压器和连接器并采用标准无线充电,将能协助减少电子废弃物,并提升移动设备的"绿色资历"。
另一个重要因素是移动解决方案的技术升级,如采用 1,080p和3D等显示技术。移动解决方案将增加采用高解析的显示技术,该显示技术受到高效能图形控制器和多核心中央处理器(CPU)的支持;此外,整合日益增加的各种移动解决方案技术,包括3D全球卫星定位系统(GPS)解决方案、高效能影音技术、近距离无线通信(NFC)技术、可携式电视及高效能游戏,这些功能将会提高装置电池电源的需求。
移动解决方案的电源通常是锂离子(Li-ion)聚合物电池,其能源密度达到饱和已经数年。锂电池在技术升级和向不同金属转移所提升的效能和寿命,已无法满足增加的电源需求,同时电池必须维持在小尺寸,以符合移动解决方案的应用需求。因为单位体积的电池容量已达极限,解决方案将须要达到更高的电池容量,或提高充电频率。
在移动解决方案尺寸缩小的同时,较高容量的电池将影响解决方案整体尺寸和成本;另外须要注意的是,较高容量的电池需要更快速的充电效率,而在维持电池生命周期和所需寿命条件时会产生化学变化,因此,提高充电效率似乎是更显而易见的解决方案。
技术原理影响MI/MR应用领域
任何一种须使用电力的应用都可能采用无线充电方案,然而要如何选择采用MI或MR无线充电技术,则须要先检视二者的基本原理。
MI 和MR在技术架构上有很多相似之处,例如两者皆使用磁场做为电力传输的桥梁,同时电流都会在共振电路感应,产生传输电源的磁场。磁力参数对电磁场如何形成有深远的影响;磁通量可藉由直接使用电磁防护和/或变更磁芯的实际形状加以控制。磁通量的密度和容量则可藉由改善电磁场防护的穿透性加以提升(图1)。
图1 无线充电磁场
成本和厚度是选择适当电磁防护的关键因素。电流场接收和传输线圈的排列,和两者间的距离,将决定电力传输的效率;传输和接收线圈的距离越大,电力传输的效率越低。其他对能量传输效率有重大影响的因素,还包括共振频率、传输及接收线圈尺寸比例、耦合系数、线圈阻抗、集肤效应、交流(AC)及直流(DC)组件和线圈的
- 对话凌力尔特Tony Armstrong:如何看待无线充电的发展?(12-26)
- 电机原理基础知识(02-24)
- 智能穿戴设备无线充电接收解决方法图解(03-22)
- 物联网设备的无线充电技术解析(05-06)
- 无线充电原理解析及经典设计方案集锦(08-12)
- 手机无线充电器方案设计(09-12)