微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 嵌入式系统复杂问题解决方案:模拟与数字的智能集成

嵌入式系统复杂问题解决方案:模拟与数字的智能集成

时间:08-05 来源:ADI公司 点击:

速率来测量变量。快速转换时间,加上快速ARM微控制器内核,可以加快控制环路的运行速率,改进响应时间,缩短建立时间。反过来,这又能提高生产线系统的吞吐量和效率,从而降低生产成本。就如太阳能光伏应用一样,SARADC是电机控制的良好选择。在电机控制的例子中,可以设计出高性能SARADC,无需均值或过采样也可达到要求。

  图2中的各种知识产权模块都经过精心设计,相互配合良好。需要的结果是一种高度敏捷的仪器仪表子系统,可以采集多个计划精确的采样,并高效地将其交付给 ARM的主存储器。对于电机控制,相位绕组电流和其他测量值均可在PWM周期中的精确指定点进行同步采样。在此基础上,采样数据可以在不产生开销的情况下高效地移至微控制器的存储器以进行处理。为了实现这一目标,混合信号控制处理器中有5个不同的模块需要协同工作。

  

  图2 电机控制系统功能框图

  周期开始时,发送一个PWM脉冲到触发路由单元(TRU),后者负责将触发主机连接至触发从机。在本例中,PWM为触发主机,ADC控制器 (ADCC)定时器为触发从机。ADCC需要具备管理大量事件的能力,并使用定时器(TMR0/TMR1)来跟踪从PWM触发到启动特定ADC事件所需时间。在定时器与特定事件相匹配的情况下,选择的是ADC输入多路复用(M0和M1)和通道(ADC0和ADC1)。接下来,将转换开始信号发送至ADC。采样数据从ADC移至ADCC,然后从ADCC通过DMA移至微控制器SRAM。

  下面的图3所示为PWM脉冲、PWM同步和ADCC所控制ADC事件之间的相对时序。

  

  图3 用ADC对5个不同电机控制变量进行采样的时序

  对于面向电机控制的混合信号控制处理器设计,其在PWM、TRU、多路复用、缓冲、SARADC和DMA方面有着良好的知识产权基础。然而,为了在PWM周期中实现ADC采样的精密时序,必须对这些模块的设计进行特别的改动。ADCC模块的必要性是有事实依据的,即其他知识产权模块集成于单枚芯片中,它们之间需要协调。ADCC即专门针对这一要求而设计,充分发挥了两个ADC引擎的高速优势,这些ADC引擎的转换时间快达380ns。

  结论

  高级基础技术只是个开端而已——芯片设计师必须对客户的系统有着全面的了解,并在精密模拟和数字元件的设计、应用及优化方面具备深厚的专业知识。另外,芯片制造商必须愿意并有能力与系统制造商进行直接互动和协作,共同打造新型产品。选用最合适的元件,针对目标终端应用进行优化,对知识产权模块进行改动,使其默契配合。只有这些条件得到满足,才能将优化的独立元件有机地整合起来。ADI 公司即推出了此类智能集成产品的良好典范,其中包括ADuCM360(一款完全集成式3.9kSPS、24位数据采集系统)以及ADSP-CM403F和 ADSP-CM408F(集成两个高精度16位ADC和ARMCortex-M4处理器内核的混合信号控制处理器)。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top