微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于高速FPGA的PCB设计技术

基于高速FPGA的PCB设计技术

时间:08-02 来源:电子市场网 点击:

PCB的电源与地平面之间的电感,并有助于控制PCB上各处的信号和IC的阻抗。旁路电容有助于为FPGA提供一个干净的电源(提供一个电荷库)。传统规则是在方便PCB布线的任何地方都应布置去耦电容,并且FPGA电源引脚的数量决定了去耦电容的数量。但是,FPGA的超高开关速度彻底打破了这种陈规。

  在典型的FPGA板设计中,最靠近电源的电容为负载的电流变化提供频率补偿。为了提供低频滤波并防止电源电压下降,要使用大的去耦电容。电压下降是由于设计电路启动时稳压器的响应有所滞后。这种大电容通常是低频响应较好的电解电容,其频率响应范围从直流到几百kHz.

  每个FPGA输出变化都要求对信号线充电和放电,这需要能量。旁路电容的功能是在宽频率范围内提供局部能量存储。另外,还需要串联电感很小的小电容来为高频瞬变提供高速电流。而反应慢的大电容在高频电容器能量消耗掉以后继续提供电流。

  电源总线上大量的电流瞬变增加了FPGA设计的复杂性。这种电流瞬变通常与SSO/SSN有关。插入电感非常小的电容器将提供局部高频能量,可用来消除电源总线上的开关电流噪声。这种防止高频电流进入器件电源的去耦电容必须非常靠近FPGA(小于1cm)。有时会将许多小电容并联到一起作为器件的局部能量存储,并快速响应电流的变化需求。

  总的来说,去耦电容的布线应该绝对的短,包括过孔中的垂直距离。即便是增加一点点也会增加导线的电感,从而降低去耦的效果。

  其他技术

  随着信号速度的提高,要在电路板上轻松地传输数据变得日益困难。可以利用其他一些技术来进一步提升PCB的性能。

  首先也是最明显的方法就是简单的器件布局。为最关键的连接设计最短和最直接的路径已经是常识了,但不要低估了这一点。既然最简单的策略可以得到最好的效果,何必还要费力去调整板上的信号呢?

  几乎同样简要的方法是要考虑信号线的宽度。当数据率高达622MHz甚至更高时,信号传导的趋肤效应变得越发突出。当距离较长时,PCB上很细的走线(比如4个或5个mil)将对信号形成很大的衰减,就像一个没有设计好的具有衰减的低通滤波器一样,其衰减随频率增加而增加。背板越长,频率越高,信号线的宽度应越宽。对于长度大于20英寸的背板走线,线宽应该达到10或12mil.

  通常, 板子上最关键的信号是时钟信号。当时钟线设计得太长或不好的话,就会为下游放大抖动和偏移,尤其是速度增加的时候。应该避免使用多个层来传输时钟,并且不要在时钟线上有过孔,因为过孔将增加阻抗变化和反射。如果必须用内层来布设时钟,那么上下层应该使用地平面来减小延迟。当设计采用FPGA PLL时,电源平面上的噪声会增加PLL抖动。如果这一点很关键,可以为PLL创建一个"电源岛",这种岛可以利用金属平面中的较厚蚀刻来实现PLL模拟电源和数字电源的隔离。

  对于速率超过2Gbps的信号,必须考虑成本更高的解决方案。在这么高的频率下,背板厚度和过孔设计对信号的完整性影响很大。背板厚度不超过0.200英寸时效果较好。当PCB上为高速信号时,层数应尽可能少,这样可以限制过孔的数量。在厚板中,连接信号层的过孔较长,将形成信号路径上的传输线分支。采用埋孔可以解决该问题,但制造成本很高。另一种选择是选用低耗损的介电材料,例如Rogers 4350, GETEK或ARLON.这些材料与FR4材料相比其成本可能接近翻倍,但有时这是唯一的选择。

  还有其他一些用于FPGA的设计技术,它们可以提供I/O位置的一些选择。在关键的高速SERDES设计中,可以通过保留(但不用)相邻的I/O引脚来隔离SERDES I/O.例如,相对于SERDES Rx和Tx, VCCRX# 和 VCCTX#以及球位置,可以保留3x3 或5x5 BGA 球区域。或者如果可能的话,可以保留靠近SERDES的整个I/O组。如果设计中没有I/O限制,这些技术能够带来好处,而且不会增加成本。

  最后,也是最好的方法之一是参考FPGA制造商提供的参考板。绝大部分制造商会提供参考板的源版图信息,虽然由于私有信息问题可能需要特别申请。这些电路板通常包含标准的高速I/O接口,因为FPGA制造商在表征和认证他们的器件时需要用到这些接口。不过要记住,这些电路板通常是为多种用途设计的,不见得与特定的设计需求刚好匹配。虽然这样, 它们仍可以作为创建解决方案的起点。

  本文小结

当然,本文只谈及了一些基本的概念。这里所涉及的任何一个主题都可以用整本书的篇幅来讨论。关键是要在为PCB版图设计投入大量时间和精力之前搞清楚目标是什么。一旦完成了版图设计,重新设计就会耗费大量的时间和金钱,即便是对走线的宽度作略

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top