浅析便携系统中微处理器功耗的设计考虑
市场对高性能和新特色产品的持续需求给便携设备的设计为员出了种种难题。在许多情况下,设计已达到所允许功耗的极限。计算机和电话用户往往不原使用电池寿命太短的产品。所以,最佳的解决方案是降低电路的功耗--从微处理器开始,它是系统的核心并且消耗的功率最大。
通常,处理器是最主要的功耗部件,尽管便携设备的其他部件也消耗不少功率。例如在笔记本计算机中,磁盘驱动、显示和图形电路与微处理器争用可用电池功率。在通信设备(如数字蜂窝电话)中,其RF电路的功耗与基带处理器的功耗不相上下。所以,做为设计工程师必须拟定功率预算,并确定不同特性的相对优先次序。
在Intel公司出版的"Mobile Power Guidelines 2000"中,建议笔记本计算机功率预算分配5W给微型笔记本计算机的处理器,9.5W给全特性笔记本计算机的处理器(见表1)。两种类型笔记本计算机都假定包含硬盘驱动器(功耗1.4W左右),但只有较大型的才包含DVD驱动器(功耗1.4W)。同样,微型笔记本计算机给显示器分配的功纺较少(2.8W 对4.3W)。正如在Interl例子中可看到的那样,任何所需功率的削减必须在各个方面进行,而不仅仅是在处理器方面。即使微处理器的效率不断提高,处理器功率的显著低通常也要对性能加以权衡。所以,对处理器性能的要求必须与对其他特性(如DVD驱动器)的要求加以平衡。
困难的相互比较
不同类型微处理器(CISC,RISC或DSP)的额定功率是不同的,
这是因为它们针对不同的应用。对于一给定的类型,不同的制造商也规定在不同条件下的额定功率。功率增加通常正比于工作负载。所以,微处理器往往被定额为每兆赫时钟频率需要多少瓦。但是,其他类型的处理器在某一给定的时钟频率下执行更多的指令或完成更多次的运算。因此,有些厂商喜欢标定每瓦功耗完成多少 Mips(每秒百万条指令)或MOPS(每秒百万次运算)。
遗憾的是,厂家兜售的数值大多并没有给为们所需的信息。人们希望知道在特定应用中在正常工作条件下的功耗。很多微处理器厂商给出在空载条件下的功率,而不是峰值性能。因此,最好的办法是标定一种很近似于实际应用的标准基准测试。Intel 公司对笔记本计算机所建议的功率预算是基于"3-D WinBench"测试的,这种测试包含图形密集的指令混合比例。因此,针对微型笔记本计算机应用的带L2高速缓存的Mobile Pentium II处理器的峰值功率为6W、休眠功率为0.36W、平均3-D WinBench 功率为5W.
降低功耗的一个方法是在处理器芯片中增加更多外设元件,以避免需要功耗的线路驱动器。由于避免了寄生电感和电容,这种方法也有助于改进整机性能。当然,增加电路元件仍将会增加芯片的总功耗。
性能提高
为通用PC和工作站而设计的Interlx86和Pentium 微处理器总是需要较大的功率,这是因为其大的指令系统和复杂的体系结构所致。然而,随着便携计算机的出现,Interl公司不得不针对移动设备市场推出其处理器的较低功率型。现在Interl提供Celeron和Pentium II处理器的移动型。移动型Celeron的时钟频率高达366MHz,而移动型433MHz型今年每三季度推出。Interl今年底将推出"Copper-mine"Pentium III的移动型,工作在600MHz以上。
所的Interl 移动型微处理器现在都采用PGA(引脚网格阵列)插座。原来Celeron处理器为了降低成本不包含L2高速缓存,而而在包含128kB片上L2高速缓存,而Pentium II和Pentium III的L2为256 kB。当然,现在所有处理器都包含32 kB L1高速缓存。Celeron型在Intel 的移动型处理器中功耗最低。由于移动型Celeron的"Quick Start"能节特性,便利处理器的空载功率只有0.4W,而采用MMX技术的Pentium处理器功率为1.1W。
通常,较新的处理器比其原先的型号具有更高的功效。使用片上L2高速缓存既提高了性能又在实际上降低了功耗(与使用同样大小的外部L2高速缓存相同)。同样,并行处理技术是既提高性能又不大幅增加功耗的有效方法。除超标量和超流水线硬件结构外,Intel 的新芯片包括用于特殊多媒体指令的SIMD(单指令,多数据)处理技术。大多数高性能微处理器现在采用0.25μm工艺,而下一代将用0.18μm。所以功率/性能比继续下降。
更激烈的竞争
除了更高的电路密度和吸引人的移动设备市场外,增强竞争力是迫使Intel 公司大幅降低它的微处理器功耗和成本的另一因素。有些参与竞争的公司(如AMD)经慎重考虑已瞄准移动应用。最近市场报告指出,今年4月份AMD的市场份额为44%,Intel为51%,而18个月以前Intel在同一移动型处
- 基于Intel Atom Z2580处理器的智能手机解决方案(06-14)
- 详解51单片机学习过程中的四大误区(07-19)
- 便携设备中供电电路的综合考虑(11-13)
- 便携式医疗电子装置的设计考虑(06-16)
- RFID腕带在医疗物联网中的应用(06-16)
- 智能化的便携式流感诊断系统设计方案(06-16)