基于48个单体的钠硫电池模块为应用研究
0 引言
当前,电力峰谷差的平抑、电网的安全可靠性和电能质量、可再生能源的开发以及智能电网技术的发展都对大规模储能技术提出了较高的要求,在众多的储能技术中,钠硫电池以其优越的性能,备受各国研发人员的关注。钠硫电池的研发主要包括电池制造技术和电池管理技术的研发,这两大技术也正是钠硫电池实际应用中的最大技术瓶颈。
在钠硫电池的管理技术中,单体电压的检测是不可或缺的一部分,其对整个电池模块的安全和稳定运行有着十分重要的影响。根据所检测的单体电压,进行均衡管理和告警分析,其中单体电压告警通常采用两级梯度:报警和闭锁(或者称为切断),一般包括:单体过压报警、单体过压闭锁、单体欠压报警、单体欠压闭锁、单体电压负变化率报警、单体电压负变化率闭锁,有些还会增加单体电压不均衡报警和闭锁。钠硫电池模块通常包含很多个单体电池,比如5 kW 的电池模块包含单体电池48只,正因为单体的数目较多,所以寻求一种切实可行的检测方案具有重要意义。
单体电压的检测方法有很多,常用的测量方法有共模测量法和开关切换法。共模测量法即相对同一参考点,用精密电阻等比例衰减各测量点的电压,然后依次相减得到各单体的电压,该方法电路比较简单,缺点是存在累积误差,从而使测量精度降低。参考文献中采用了开关切换法,但该方案中每个单体都配有两个开关,从而增加了系统的成本、体积和功耗,本文在此基础上,运用一种改进的方案来实现对单体电压的检测,该方案可以有效减少开关的数目以及整个检测系统的体积。
1 单体电压巡检系统设计
本文的研究对象是包含48 个单体的钠硫电池模块,测量时将48 个单体分成4 组:第一组为编号01~12的单体,第二组为编号13~24的单体,第三组为编号25~36的单体,第四组为编号37~48的单体。对这4组进行并行测量,即第一轮测量编号为01、13、25、37 的单体,第二轮测量编号为02、14、26、38 的单体,依此类推,第十二轮测量编号为12、24、36、48的单体,至此整个电池模块的所有单体电压检测完毕。
以第一组测量为例,测量原理图如图1 所示,其中IN+、IN-经过信号调理电路接到A/D芯片。当测量编号为1的单体cell1时,开关S1、S2、O1、O2闭合,cell1的正端接到IN+、负端接到IN-。当测量编号为2的单体cell2时,开关S2、S3、E1、E2 闭合,cell2 的正端接到IN+、负端接到IN-,被测量单体与需要闭合的开关之间的关系如表1所示,不难发现,测量奇数编号的单体时,开关O1、O2闭合,测量偶数编号的单体时,开关E1、E2闭合,因此,为了减少开关O1、O2、E1、E2的动作次数和因开关频繁动作引起的损耗、提高电压巡检的效率,将奇数编号的单体与偶数编号的单体分开测量,即先测量奇数编号的单体,然后再检测偶数编号的单体。
在器件选型方面,遵循满足系统需求并且有一定升级余量的原则,采用TMS320F28335作为电池模块管理单元(BMU)的主控制器,现场可编程门阵列(FPGA)EP2C8Q208C8N 用来作为BMU 的辅助控制器,这样一来,既可以利用TMS320F28335的现成接口,比如SPI接口、CAN 接口等,又避免了大量分立逻辑器件的运用,使电路的体积小、功耗也小。
图1 中的开关采用松下PhotoMOS 型光耦继电器AQW214EH.利用TMS320F28335 的五个GPIO 口来控制EP2C8Q208C8N输出17路控制信号,分别控制图1中的17个开关。
一个AQW214EH 可以作为2 个开关,图2 为开关S1、S2的具体实现,其余开关的实现原理完全一样,图2中,cell1+表示接到图1中cell1的正极,cell2+表示接到图1中cell2 的正极,S1、S2 分别接到FPGA 的相应IO 口,当FPGA 的IO口输出低电平时,相应的开关闭合,反之,则开关断开。
以上部分以第一组为例讲述了其测量原理,其余三组的实现原理和第一组完全一样,这四组公用EP2C8Q208C8N 输出的17 路控制信号,这样才能保证每一轮测量都能检测到这四组中对应编号的单体。将四组的输出信号经过信号调理电路,分别送入A/D 芯片,本设计采用的A/D芯片为16位精度、最大采样速率为100 KSPS的ADS8325,其串行SPI输出经过光耦隔离后与TMS320F28335的SPI接口相连,由于SPI时钟频率可以达到MHz 级,因此从ADS8325 读出数据耗时基本可以忽略不计,每一轮采样时间将非常短。
不难发现,对于包含48 个单体的钠硫电池模块而言,如果采用为每个单体分配2个开关的方案,就需要96 个开关,即需要48 片AQW214EH,本文的方案对于每一组需要17 个开关,四组一共68 个开关,即34 片AQW214EH,这必将大大
- 单片式电池充电器简化太阳能供电设计(08-20)
- 能量收集器于所在环境产生电能,无线传感器无需使用电池(08-23)
- 嵌入式软件电源能耗优化的解决方案(10-21)
- 利用LTC6801进行电池管理系统 (BMS) 的故障监视(10-19)
- 电动 / 混合电动汽车电池管理系统的可靠性(11-09)
- VRLA 蓄电池在光伏发电系统中的研究与应用(02-09)