基于SLH89F5162的信号发生器设计
教学的需要。DDS技术是一种新兴的频率合成技术,他具有频率分辨率极高、频率切换速度快、切换相位连续、输出信号相位噪声低、可编程、全数字化易于集成、体积孝重量轻等优点
根据DDS的特点将其应用于信号源中可以大大提高信号源的分辨率,而且可以有效的降低成本、缩小体积。
波形发生器是电子系统的心脏,随着科学技术的发展,现代雷达系统和电子对抗系统对信号源的要求越来越高,提高信号源性能已经成为国内和国外工程师的主要方向。DDS是一种全新的频率合成技术,DDS的出现给信号源的研究开创了一个新的纪元,现在这种频率合成已在电子领域得到越来越多的应用。本文在研究DDS基本原理的基础上,完成了波形器的电路设计和编程。用这种方法设计的波形发生器结构简单,造价成本低,而且信号源输出信号的分辨率提高。
二、项目设计原理
1、 原理概述
专用DDS芯片集成度高、稳定性好且功能完善强大,深受广大电子系统开发工作者的喜爱与认可,直接用此芯片与单片机配合完成设计可以大幅减小设计难度、缩短开发周期。
AD公司研发了一系列高性能DDS专用芯片,如AD9850(最高工作时钟125MHz,32位频率控制字,8位并行口或串行口直接装载频率和相位调制据)。
对本系统的设计要求而言,选用AD9834最为恰当。图2.1为9834功能框图。
主要原因有以下几点:
a.AD9834是由28位相位累加器、正弦只读存储器(SIN ROM)和一个10位D/A构成的数字控制式振荡器。具有低抖动的时钟输出和正弦波输出/三角波输出,控制字采用串行装载方式,窄带SFDR》72dB 。
b.工作时钟频率为50MHz,频率精确性能被控制到十亿分之一,产生正弦波可达25MHz,足够完成设计任务且价格远低于高频DDS芯片,提高性价比。
c.AD9834为用户提供了多种输出波形。正弦只读存储器(SIN ROM)可以被旁路,因此,可以从DAC输出线性的向上或者向下斜坡电压。而这一点在多数DDS芯片上无法实现。
d.芯片具有频率调制(FSK调制)和相位调制(PSK调制)性能。芯片有2个28位频率寄存器和2个12位相位寄存器,可以通过外部引脚或控制字来控制或切换,且切换时只需8~9个时钟周期即可达到稳定。此功能使前半周期及后半周期有不同的长度且能够完美的衔接。
e.芯片有一复位引脚(RESET),置1时写入频率和相位控制字,清0时开始产生输出波形。且RESET不能对相位、频率或控制寄存器复位,即RESET时不会改变已设定的信息。此功能可以做到几片AD9834保持相同相位工作。
f.此外,此芯片还具有一些其他功能,如具有低功耗模式以及能用片内比较器产生方波等,由于这些功能在此系统设计中并不重要,在此不再赘述。
图2.1 AD9834功能框图
根据以上所述的AD9834芯片所具有的功能,本设计将此定为波形发生方案,通过单片机SLH89F5162产生的切换AD9834频率寄存器的控制信号实现不同占空比的正弦波、三角波,方波波形。
2、 硬件设计原理
硬件原理框图如图3.1所示。选择单片机SLH89F5162作为主控芯片,及AD9834作为DDS的信号输出模块,可以输出正弦波,三角波,方波。输出频率范围是1-25MHz 。用1602液晶进行辅助显示,4*4的按键进行数据输入模块。利用矩阵键盘输入要产生的频率值,单片机SLH89F5162计算出控制寄存器的值,频率寄存器0,相位寄存器0,频率寄存器1,相位寄存器1,发送到AD9834相应寄存器,DDS的分频原理产生正弦波,以及三角波,利用内部存在的比较器产生方波。
3、 软件设计原理
a.最高频率计算
(1)
对于AD9834其频率范围由式(1)和式(2)决定:
(2)
故其可实现的最高频率即为 ,在本设计中即为25MHz。
b、最低频率计算
对于AD9834其频率范围由式(1)和式(2)决定
故其可实现的最低频率即为 ,在本设计中即为0.0001863Hz。
三、项目设计框图
1、硬件设计框图
图3.1 硬件原理框图
2、软件设计框图
四、测试结果
项目达到的关键硬件指标。
通过测试,这个系统可以实现波形发生,产生了正弦波,三角波,方波。但受到单片机计算寄存器值的精度限制和DDS本身存在的分辨率的限制,以上产生的频率有一定误差。
附录:
注意事项:
1.用深联华单片机脱机下载时,不要焊接1602液晶显示器对比度可以调节的可变电阻R1(在此非常感谢@冰封世纪,在他一步步指导下,我下载成功的。分析其原因是脱机下载时,编程器提供的VCC电流有限,被可变电阻分流后,就会造成编程器,蓝灯亮一下,红灯接
SLH89F5162 信号发生器 相关文章:
- 基于安芯一号SLH89F5162的蓝牙控制小车(02-14)
- 基于SLH89F5162单片机的游戏手柄设计(02-19)
- 智能语音楼宇对讲系统(02-19)
- 低频正弦信号发生器的设计(02-15)
- 基于AD9851的信号发生器设计(04-02)
- 基于CPLD和LVPECL的可调窄脉冲信号发生器设计与实现(11-13)