微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于PIC单片机的逆变电路设计初探

基于PIC单片机的逆变电路设计初探

时间:05-18 来源:互联网 点击:

用了分段同步调制法,[4-6]吸收上述两种方法的优点,且很好地克服各自的缺点,得到特性较好的正弦波。其具体操作为:把调制波频率分为几个载波比不相同的频段,在各个频段内保持载波比恒定,通过配置单片机内部的载波频率实现输出基波频率的变化,即改变计数器的TOP值,实现调频功能。选取的原则为:

  输出频率高的频段采用低载波比,输出频率低的频段采用高载波比。同时,载波比选取为3的倍数以得到严格对称的双极性SPWM信号。本系统中将频段分成五段,具体见表1:

  

  表1 频率分段与载波比取值

  对输出电压的实时反馈是软件设计的关键部分。电网的波动或是负载的变化可能导致输出电压不稳定,因此为了实现输出电压的动态稳定特性,在系统中加入PID增量数字闭环控制,公式如下:

  

  其中Kp=1/σ是比例系数,Kl=KpT/Tl是积分系数,Kl=KpTD/T是微分系数。结合单片机中的A/D转换功能模块与PID闭环控制,可以很好地修正各开关周期的脉宽,达到动态稳定的目的。

  四、逆变仿真结果

  在逆变部分的仿真中,本系统使用的是M AT L A B中的SIMULINK组件。电路原理为利用PIC16F873单片机输出PWM波控制IR2136进而控制晶闸管的栅极导通,从而实现变频调幅。

  在此三相逆变电路中,运用三相全桥进行LC滤波之后得到输出。同时,该系统中还包括一个电压负反馈和一个电流负反馈系统。这样的设计可以对一些扰动起到一定的抵抗作用,使得输出的三相电压较为稳定,有较好的相角裕度和一定的幅值裕度,但在实际的逆变过程中可能出现同一桥臂的两个IGBT同时导通所导致的短路现象。考虑上述情况后,对上述电路原理图进行了改进,如下图3所示,加入了死区,其仿真结果如图4所示:

  

  图3 带死区的调制波、三角波调制电路

  

  图4 带死区的调制波、三角波调制电路波形

  在图4中波形在下波峰处发生畸变,这是由于在下桥臂上引入了死区非线性所导致的结果,属于附加畸变。

  五、结论

  上述的实验结果表明,工业条件下对于电源的要求可通过利用PIC16F873单片机输出PWM波控制IR2136进而控制晶闸管的栅极导通的方法实现,且该方法具有谐波较小、滤波电路较为简单的优点。因此,它在高性能中变频调速、直流并网等领域有着广泛的应用前景。同时,采用单片机来产生SPWM信号有着不可比拟的优势,是智能化电源领域的必然发展趋势。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top