用AndesCore N1033A-S处理器实现μC/OS-II的移植
μC/OS-II使用结构常量OS_STK_GROWTH来指定堆栈的增长方式,设置为0表示堆栈从下往上增长,设置为1表示从上往下增长。这里我们定义成后者,即堆栈的增长方向是从内存高地址向低地址方向递减并且堆栈指针总是指向栈顶数据:
3.1.4.定义OS_TASK_SW()宏
OS_TASK_SW()是一个宏,它在μC/OS-Ⅱ从低优先级任务切换到最高优先级任务时被调用的。任务切换只是简单的将处理器寄存器保存到将被挂起的任务的堆栈中,并且将更高优先级的任务从堆栈中恢复出来。可采用两种方式定义这个宏,使用软中断将中断向量指向OSCtxSW()函数;或者直接调用OSCtxSW()函数,这里我们采用后者(OSCtxSW()函数的实现将在后面介绍):
3.2处理器相关部分汇编实现
μC/OS-Ⅱ的移植需要用户编写三个最基本的汇编语言函数:OSStartHighRdy(),OSCtxSw(),OSIntCtxSw()。它们会共用一些代码,为了方便阅读将它们写在同一个汇编文件os_cpu_a.S中。
3.2.1 OSStartHighRdy():运行优先级最高的就绪任务。
OSStartHighRdy()函数是在OSStart()多任务启动之后,负责从最高优先级任务的TCB控制块中获得该任务的堆栈指针SP,并通过SP恢复CPU现场以启动最高优先级的任务执行。另外OSStartHighRdy()还必须在最高优先级任务恢复之前和调用OSTaskSwHook()之后设置OSRunning为TRUE.其实现代码如下:
3.2.2 OSCtxSw()和OSIntCtxSw()
OSCtxSw()是任务优先级切换函数,它的作用是先将当前任务的CPU现场保存到该任务的堆栈中,然后获得最高优先级任务的堆栈指针,并从该堆栈中恢复此任务的CPU现场,使之继续执行,该函数就完成了一次任务切换。
OSIntCtxSw()是中断级的任务切换函数。由于中断可能会使更高优先级的任务进入就绪态,因此为了让更高优先级的任务能立即运行,在中断服务子程序最后会调用OSIntCtxSw()做任务切换。这样做能够尽快的让高优先级的任务得到相应的处理,保证系统的实时性能。
OSCtxSw()和OSIntCtxSw()都是用于任务切换的函数,其区别在于,在 OSIntCtxSw()中无需再保存处理器寄存器,因为在OSIntCtxSw()之前已发生中断,所以可以保证所有的处理器寄存器都被正确地保存到了被中断的任务的堆栈之中。OSCtxSw()和OSIntCtxSw()实现代码如下:
N1033A-S处理器定义了四级(0-3)中断,在各级中断的转换时需要保存当前中断层级的寄存器。调用OSCtxSw()时,中断将由0级(即没有中断)转到1级,所以需要将第0级的寄存器PSW和PC保存到第1级的寄存器IPSW和IPC中。 CtxSave和CtxRestore两个宏用来保存和恢复任务上下文。需要保存或恢复的寄存器包括32个通用寄存器(R0-R31)的值、程序计数器(PC)的值以及处理器状态字寄存器(PSW)的值。宏IntlSwitch n通过修改PSW.INIT的值来切换中断层级。CtxSave和IntlSwitch的汇编实现如下(由于CtxRestore与CtxSave过程类似,这里不做赘述):
3.3 移植C语言编写的几个与操作系统相关的函数
μC/OS-Ⅱ有六个与CPU相关的函数:OSTaskStkInit()、 OSTaskCreateHook()、OSTaskDelHook()、OSTaskSwHook()、OSTaskStatHook()、 OSTimeTickHook(),它们被定义在ucos_ii.h中。其中唯一必须移植的函数是任务堆栈初始化函数OSTaskStkInit(),其它五个函数必须得声明但没必要包含代码。因此这里我们只介绍OSTaskStkInit(),其代码的实现如下:
OSTaskStkInit()在任务创建时被调用,负责初始化任务的堆栈结构并返回新堆栈的指针,使得堆栈看起来就像刚发生过中断并将所有的寄存器保存到堆栈中的情形一样。除了要保存任务的地址、变量的指针以及处理器状态字的值外,Andes N1033A-S处理器还要求用户保存所有32个通用寄存器(R0-R31)、四个用户寄存器(d0.hi, d0.lo, d1.hi, d1.lo)。还有一点需要注意,在N1033A-S处理器中,堆栈指针的地址必须满足8Byte对齐,程序最后一段逻辑即将堆栈指针调整到正确的位置,这一点在编写其他代码例如在宏CtxSave中同样需要注意。
4. 结语
基于AndesStar?架构的优势,可以很容易的实现μC/OS-Ⅱ在N1033A-S处理器上的移植。不仅μC/OS-Ⅱ,其它嵌入式操作系统也可以很方便地移植到AndesCore?相应的处理器上,例如Nuclues、FreeRTOS以及Contiki。
晶心科技利用 AndesCore? N1033A-S高效能的 Audio ISA 和 FPGA开发平台弹性的设计架构,基于各种RTOS,为客户提供了的丰富的软件资源
AndesCore uC OS-II 移植 操作系统 处理器 相关文章:
- 如何应用AndesCoreTM EDM安全访问机制(02-02)
- 浅析Buck变换器的电流取样电阻放置位置(12-31)
- 单相双Buck光伏逆变器的设计方案(02-18)
- uCOS-II在车载GPS移动终端中的应用(04-13)
- 实现统一通信的可移动性方法研究(09-19)
- 盘点STM32-NUCLEO开发与仿真平台(03-28)