无线充电应用可有效减少充电应用耗能
时空载/1小时进行充电程序),那代表23小时内每小时损耗0.15W电能,23小时总产生3.45W耗能,充电时的耗能加上空载耗能等于整天下来损失了7.75W。
从计算过程会发现,传统充电器的消耗能量,会因为待机空负载的耗能白白浪费能源,若是以两个充电器在近似的使用情境下使用,等于是一天光两组充电器就会损耗15.5W能源。以此为基础来对比无线充电解决方案时,即便目前透过无线机制传送的电能会有近30%的功耗损失,但因为多充电设备的无线充电盘进行整合,只要能在空载功耗有效压低在100mW,只要是一组以上的有线充电器应用条件,无线充电器的整体功耗就可明显优于有线充电器方案。
无线充电技术设计复杂 线圈尺寸、角度、传输方式都会影响能量传递
再来观察无线充电设计方案的塬理与结构,无线充电解决方案,主要是利用能量转换成无线传输后,利用感应耦合电能的传输过程,进行电能的无线传递,基本上由Tx(发射端)将交流电通过线圈形成磁场后,再利用Rx(接收端)的线圈进行感应产生电压差,而这种透过无线过程传递在Rx端线圈形成的电压差,就可以用于直接驱动电子装置的供应电源,或是经由Rx线路转换变压后形成对电池充电的电力来源。
至于电能的传输效率,其实决定在Tx/Rx间的耦合(k)值与品质(Q)参数的差异,而影响耦合与品质的关键相当多,例如Tx/Rx两方的距离、相对尺寸、线圈设计、线圈角度、线圈形状等都会有影响。
一般而言,要令无线充电的电能传输效率提高,有许多作法,例如将Tx/Rx之间的距离儘可能缩小,即距离越短、无线充电效能表现即越高!另外,Tx/Rx两者的线圈尺寸差距越大,能源传输效率也会相对降低,若要达到无线充电的高效率传递能源目的,碍于能量的传递限制,应该儘可能减少Tx/Rx的距离、Tx/Rx两方的线圈设计也儘可能接近採取同样尺寸,即可达到最佳的传输效率。
无线充电解决方案已在安全性、实用性大幅改善
但在设计无线传输应用方案时,若传输能量密度增加,也会代表传输过程所造成的能量耗损将会以热的形式耗损,亦即传输能量越高、充电过程产生的热也会因此增加的物理现象,而对无线充电方案设计来说,应最大化的针对系统问题进行优化,透过降低功率耗损的同时,也能进一步改善充电过程所产生的热问题,如果为了提高充电能量密度提昇充电效能,但却还必须为Tx与Rx设置主动式散热设计(如风扇),这就会造成强制驱动风扇进行散热的额外功耗浪费,与整体充电系统的电能节约设计目的产生衝突。
另一个无线充电方案较常见的困扰就是EMF(Electric and Magnetic Fields)问题,因为无线充电是在Tx产生电磁场,透过电磁场的形成、与Rx端线圈进行无线电能的感应与转换,而为了强化充电效能,势必得加强Tx的电磁能量,即便是我们生活的环境也充斥着各种强度的电磁场,但实际上无线充电Tx所形成的电磁场一样会令使用者产生健康疑虑。
而以无线充电解决方案,所使用的电磁频谱为例,一般都是非电离层区段,而对人体有显着危害的电磁场为电离区段为主,而非电离层区段的电波能量通常极微小,对人体组织影响不大,目前多数无线充电解决方案,也针对使用者应用安全部分议题,针对用户疑虑进行认证审核,对于使用安全疑虑也可降到最低,对于无线充电应用方案,除了可以带来3C电子产品更便捷的使用方式外,在充电应用时导入更安全的智能控制搭配高效率主动智能调整充电能量的设计方案,不仅可让全载充电进行时更为安全,也能令充电设备的空载功耗降到更低,长期使用亦可达到节约能源之目的。
- 基于WPC标准的无线充电技术设备的应用(03-08)
- 无线充电待解疑问(07-04)
- 无线充电工作原理(07-04)
- 对话凌力尔特Tony Armstrong:如何看待无线充电的发展?(12-26)
- 诺基亚研发远程充电技术 可让手机实现“无限待机”(02-25)
- 美国博通:加速车联网落地五项前沿技术(03-16)