微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > MEMS加速计的三种高压灭菌器失效机理

MEMS加速计的三种高压灭菌器失效机理

时间:02-24 来源:飞思卡尔 点击:

介绍

高压灭菌器测试也叫高压锅测试,是恶劣环境所用的器件通常都要求进行的一种质量测试。 直到最近,汽车安全行业才开始提出高压灭菌器测试要求,以检验用于气囊传感器的 MEMS加速计 [1]。为了进行此测试,器件在环境试验箱不带电存储96/168小时,环境试验箱的气压为15psig、温度为120oC,相对湿度为100%。高压灭菌器经过一定的暴露时间后,器件在室温下重新测试。

尽管传感器的传感结构在密封环境下封装,以防止水分入侵,但MEMS加速计仍要承受高压灭菌压力,因为塑料包装材料可在过压和过湿条件下吸收水分。要测试加速计对高压灭菌器压力的易感性,我们将80个 MEMS加速计置于高压灭菌器测试条件下。如图1所示,加速计由MEMS传感单元(g-cell)和控制ASIC组成,采用堆叠芯片结构组装在一个QFN 封装中。传感单元由飞思卡尔二聚表面微流构成,使用玻璃熔块通过晶片键合技术密封在密封腔里。

高压灭菌器测试结果显示,25oC时,9个部件无法达到偏移规范,要求9位输出的偏移变化少于+/- 26个计数。失效部件的最大偏移变化是-48/+39个计数。 当部件进行168小时测试时,发现了更多器件失效(与偏移变化的失效行为相同)。还发现这些部件在-40oC 和125oC下具有较小的偏移变化和较紧凑的分布。失效器件还显示在空气中暴露一段时间后,出现缓慢回归规范的"自愈"行为。在正常大气条件下进行120℃焙烧,可以加速恢复过程。失效和恢复流程是可重复和可逆的。


图 1. MEMS 加速计: (a) QFN 封装视图(模具帽未显示);(b) LSM角度的传感单元芯片视图

为了确定高压灭菌器失效的根源,我们创建了一个失效分析鱼骨图(图2),全面查看高压灭菌器测试条件下(湿度、压力和温度)偏移变化的所有可能原因。从以下四个主要方面审查了设计和制造工艺:封装、ASIC、传感器(g-cell)和测试。因此发现了微机械传感独有的三种失效机理。这三种机理是:

  • 导致偏移变化的封装应力
  • 电阻漏电
  • 寄生电容变化

II. 封装应力影响

环氧树脂塑封(EMC)材料能吸收水分,且吸热会膨胀 [2]。扫描声学显微镜(C-SAM)检测还揭示,复合模具和引线框架之间出现过多分层。这些变化会改变封装和传感单元的应力状态,从而引起偏移变化。FEA 封装建模(图3)用于模拟这种应力变化的影响。这个模型考虑了 EMC 和引线框架之间的非对称分层。根据达到平衡时水分摄取大于0.54%这一原理,试验还假设吸湿应力为0.15%。


图 2. 高压灭菌器失效分析鱼骨图

FEA 模拟结果显示,传感器的惯性质量位移相当对称,但是由于分层和吸湿膨胀,封装的位移场不对称。模拟显示,吸湿膨胀引起的位移与125℃时热应变引起的位移数量级相同。 封装应力引起的最大偏移变化预测只有4个计数(最坏情况)。

用激光蚀刻去除传感单元周围的主要EMC部分,进一步分析失效器件。这一做法思路是,封装的应力场将大幅改变,如果器件对封装应力敏感,这可能导致偏移变化。但测试结果显示,大部分EMC移除之后,器件只有非常小的偏移变化。这一结果符合原来的 FEA预测,EMC的吸湿膨胀只会对偏移变化产生非常小的影响,封装应力作为高压灭菌器失效的根源被排除。

尽管研究显示封装应力不是高压灭菌器失效的根源,值得一提的是,这归因于应力不敏感传感器/封装设计。封装吸湿应力非常大,如果传感器设计不正确,可能成为导致高压灭菌器失效的主要原因。减少封装应力易感性的设计策略已在[3]中讨论。

 

图3 . EMC 吸湿膨胀的FEA模拟


图4. 剥层分析,消除封装应力作为失效根源

III. 漏电影响

环氧材料的介电性能也可以通过水分摄取来改变。如图4所示,摄取水分之后,环氧/玻璃/云母复合材料的体积电阻率减少10倍以上(高达1%)。此外,尽管高压灭菌器试验箱中使用了去离子水,高压灭菌器大气的水凝结可以把封装材料内的离子污染聚集在一起,形成不同潜力的传感器之间的漏电通道。

MEMS传感器的加工步骤也有助于形成潜在的漏电通道。一方面,牺牲性氧化蚀刻步骤中使用的氢氟酸可能留下氟离子。而且,密封材料(玻璃熔块)中富含氧化铅,特定条件下可以沉淀成导电铅结。图5中的SEM图显示了玻璃熔块键合区出现的结节或团块非常明显(但Auger 分析不能区别它们是铅还是氧化铅)。

图 5. 玻璃熔块区的SEM图


图6 调制器扫频测量结果

应该指出的是,如果"火"线和地线之间存在电阻漏电,则会出现偏移变化。∑△ 调制器前端对保存在差分电容器中的电荷(即传感单元)进行采

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top