高亮度白光LED驱动典型方案
反馈环路直接改变LED的电流实现发光亮度的调节,缺点是会带来色彩漂移和发光效率的下降;PWM调光(PWM Dimming)通过保持流过LED的最大电流减小导通占空比来实现,如果要实现50%的亮度就要LED电流采用50%的占空比。需要注意的是PWM调光信号的频率必须大于100Hz,以使人眼不会被发现灯的闪烁,而最大的PWM调光频率由电源的启动时间或者响应时间决定。在升压型LED驱动电路中增加了一个功率管串联在LED支路上,所以对于控制器而言需要增加额外的驱动电路,增加了系统的复杂程度,但换来的是真色彩的调光效果,所以现有的LED驱动产品中广泛加入了PWM调光功能。典型的调光范围可以由调光比(Dimming Ratio)来衡量,即调光PWM的周期与导通时间的比例,数值越大说明调光的能力越强。
图5给出芯片在升压型的应用中PWM调光的控制图。从图中可以看出,外部的PWM信号控制与LED负载串联的开关。利用运放的外接补偿电容CEAOUT,当PWM信号为低电平时断开运放输出端与补偿电容的通路,维持电容上的电压直到下个PWM周期。利用这种控制方法,当开关频率在700kHz,PWM频率100Hz的情况下,最大的调光比可以达到3000 ∶ 1.
图5 PWM调光控制图
4 无采样电阻模式的设计
利用功率MOSFET的导通电阻Rds(on)作为采样电阻的方法可以省去峰值电流采样电阻Rs2,减少了不必要的功率损耗提高了整体的效率,同时减少了外围的元器件和系统所占的空间,这种方式称之为无采样电阻模式。这种模式也存在一些问题:(1)当MOSFET关断时,漏端的电压可能会迅速升高,这就对电流峰值比较器提出了更高的抗高共模电压的要求;(2)功率管的导通电阻会随着电流和温度的变化发生改变,会对设定的峰值电流阈值产生影响。对于一些特定的场合,第二个问题引入的误差在可以允许的范围内时,这种模式还是有很好的应用前景,对于高共模输入最好最简单的方法就是在关断的同时切断输入的途径,通过合理的开关切换和延时电路来实现。
无采样模式的系统图见图6。采样端通过比较器与7V基准比较判断是否工作于无采样电阻模式,通过逻辑电路决定峰值比较器的输入(IEN)、输出(SEN)控制信号。逻辑信号Gd、Gfb分别是驱动逻辑的输出信号和最终驱动功率管栅极信号的反馈。
图6 无采样模式模块框图
5 芯片版图与测试
5.1 芯片结构与版图
控制器的结构如图7所示,主要模块也标注于图中。
图7 控制器芯片的模块框图
芯片有两个基准电路,基准1用于欠压锁定比较器的基准,基准2(VREF)是一个精确度更高的电压基准用于误差放大器、比较器等模块电路。供电模块主要包括一个7V(INTVCC)输出的低压差电压调节器和3V(VDD)输出的电压调节器。运算放大器是芯片核心的模块之一,SP、SN作为运算放大器的两个输入端,OV采样输出电压则是作为过压或限压的功能。其它诸如带斜坡补偿电路的振荡器,分别用于开关管和调光管的驱动电路,峰值电流以及过压、过流比较器,逻辑单元电路等共同组成这个驱动控制器芯片系统。本文提出的升压型LED驱动控制芯片在1.5μm BCD的工艺下仿真并流片测试,芯片的输入电压范围为3~15V,图8为芯片的显微照片。
图8 控制器芯片的显微照片
5.2 芯片测试
设计升压型LED驱动电路的PCB测试版进行不同工作模式下的测试,其中的主要外围元件参数为:电感L=47μH,输出电容C=20μF,采样电阻Rs1=300 mΩ,Rs2=50mΩ。当输入电压为5V,输出电压大约为24V(7个LED串联)时,占空比超过80%.图9为输出典型波形图。VOUT是输出电压,Iinduct是电感电流,Gate是功率管的驱动电压波形,在较大占空比时斜坡补偿起到了很好的稳定输出的效果。
图9 升压型LED驱动波形(占空比》80%)
图10是PWM调光功能下的测试波形,输入电压为10V,输出电压为15V,调光的频率为100Hz,调光比为3000:1.可以看到,LED的导通电流值几乎不变,实现了前面所说的恒流PWM调光功能。
图10 PWM调光模式波形(调光比3000:1)
对于选用的功率管的导通电阻Rds(on)=10mΩ(@VGS=7V),直接利用该电阻替代电流峰值检测电阻RS2,测试的条件:输入电压5V,输出电压15V,开关频率fS=320kHz,测试结果如图11所示。
图11 无采样电阻模式波形
在升压型驱动电路测试中成功实现了无采样电阻模式和PWM调光模式,测试结果充分验证了设计方案的可行性。
6 结束语
文章针对高亮度白光LED的驱动要求,提出一种适用于升压型LED驱动电路的控制器设计方案。针对LED的电气特性,芯片控制策略采用峰值电流模式控制并建立了小信号模型进行系统环路补偿设计;针对LED的背光应用要求,在控制器中集成了模拟与数字调光(PWM Dimming)功能,具体介绍了数字调光模式的功能电路,其最大的调光比(Dimming Ratio)可以达到3000:1,为了满足更高的效率要求,设计了无采样电阻的控制电路,减少了外围的器件并提高了系统的效率。芯片在1.5μm BCD工艺下设计并流片,最后给出了各种工作模式下的测试结果,基本满足设计要求。
- 电容降压LED驱动电路(06-24)
- 新型大功率蓝光LED光源驱动电路设计(08-03)
- 电动自行车控制器MOSFET驱动电路的设计(11-18)
- 两种常见的MOSFET驱动电路设计(12-02)
- 大功率LED恒流驱动电路的设计实例(06-06)
- 高频逆变电源的保护与驱动电路的设计(06-26)