微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 电容储能式高速电磁阀驱动电路的研制

电容储能式高速电磁阀驱动电路的研制

时间:08-15 来源:本站整理 点击:

选择了ir公司的专用浮地驱动芯片ir2103。需要注意的是ir2103外围自举电容和反向二极管的选择。在ir2103高端部分工作时,既需要保证在开关管关断过程中自举电容充电时间足够短,又应保证在开关管导通过程中电容电压下降不大,这就要求自举电容具有合适的电容量且漏电流要校反向二极管的选择则要求在高端打开时,其反向漏电流必须足够小,以维持自举电容两端的压差。

电容器的选择

为保证高压开启部分能提供足够的能量,需对放电电容的容量进行计算。

由图3的电磁阀电流波形,对曲线进行近似积分,估算电磁阀开启所需电量c约为24mf,考虑一定的余量后,选择容量为33mf的电容。需要注意这里的放电电容应满足高压、高频、大电流工作条件下的反复充放。经过比较后本设计选用了金属化聚丙烯薄膜电容器。

高端电流检测电路

本驱动电路的另一特点是采用了高端电流检测反馈控制pwm输出。与恒定pwm占空比控制方式相比,电流闭环反馈pwm控制可在电池电压变化的情况下保证电磁阀保持电流的恒定。这一点对于保证喷油量的精确是很必要的。

目前一般的电流反馈控制往往采用在低端设置接地电阻进行电流采样。这种方式的好处在于结构简单,成本低。然而却存在一些问题,如电流检测时电磁阀续流环难以包含在内,精度较低等。

本驱动电路采用了高端电流检测的方法。高端电流检测的好处在于不仅解决了其电流检测时续流环难以包含在内的问题而且提供了高端部分的短路保护,此外,测量精度也较高。

但高速电磁阀的开启电压高达100v,远远超过普通ic的工作电压。一般来说高端电流检测芯片往往由于自身工作电压的限制难以在高压领域得到应用。因此在应用中需设计搭建外围电路来实现电流检测芯片的浮地工作,其电路原理图如图3所示。

电流检测芯片采用了maxim公司的max4172。该器件是差分输入、电流值输出的高端电流检测放大器,输出电流值与输入差模值成比例,易转化为对地电压值。

图3中外围电路功能如下。z9、r38和q14组成并联稳压器。齐纳二极管z9将in+、in-、vcc与gnd之间的电压箝位在10v,电阻r38与三极管q14则保证齐纳二极管z9的逆向偏置电流保持在一个合适的值。只要在齐纳二极管z9的工作电流范围内,通过调整r38的大小即可使得该高端电流检测电路在任意高的电压下工作。箝位电压设为10v,以及设置二极管d13和电容c35的目的都是为了保证在低压保持pwm阶段使整个电流检测电路供电电压的稳定。三极管q13和电阻r39将输出电流值转换成对地的电压值,该电压值被反馈到pwm发生器tl494的误差比较口,与设定的反馈比较电压vl进行比较,进而实现对pwm的反馈控制。

其中r39的阻值和反馈比较电压vl的大小是根据电磁阀的工作电流倒推计算得到的。已知max4172的输出与输入的比例系数gm=10ma/v,设定检测电阻rs=10mw,电磁阀保持电流期望值为10a。经计算v1为1.5v。

从2的电磁阀电流波形可以看到在设定反馈比较电压v1 =1.5v的参数下,电流检测反馈控制后的电磁阀保持电流稳定在10a左右。

结语

电容储能式电磁阀驱动电路具有以下特点。

1. 特别适用于如转子机中引燃和主喷两个喷油脉宽时序上可能重叠的情况。可确保电磁阀开启高压的稳定;

2.电容放电模式更符合电磁阀的电流响应特点。有利于保护电磁阀并降低功耗;

3.无需产生开启脉宽。只需单片机给出喷油脉宽即可工作,简化了驱动电路;

4.电路采用高端电流检测反馈控制的pwm输出。与低端设置采样电阻的电流检测方法相比,不仅能精确控制电磁阀保持电流,解决了电流检测时电磁阀续流环难以包含在内的问题,而且提供了高端部分的短路保护。

通过在发动机电控系统中应用这种新型驱动电路,已初步实现了转子机的稳定运转。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top