微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 详解手机快充芯片的工作原理和设计要求

详解手机快充芯片的工作原理和设计要求

时间:09-12 来源:互联网 点击:

  目前随着手机配备的锂离子电池容量越来越大,人们希望能够在尽量短的时间内给自己的手机充得足够的电量,以满足自己日常生活和工作的需要。例如,华为P9配备3000mAH小时的锂离子电池,如果期望在一小时内把电池接近充满,则需要充电电流在3A以上。为了实现这么大电流的充电,使用开关式充电管理芯片(下面简称快充芯片)是一个很好的方案,这也是业界目前共同的选择。本文假设大家对DCDC的工作原理已有基本的了解,主要从技术的角度来分析应用在手机上的快充芯片的工作原理和设计要求,同时也会简要介绍其他正在涌现的充电技术。

  一、手机的四个充电环节

  

  图1 手机的四个充电环节

  图1总结了我们在实际充电过程中涉及到的四个环节:

  1)充电适配器的任务是把220V的市电转换为手机能够承受的5V电压(现在应各种充电协议,如QC和USB PD(Type C接口)等的要求,也要求能够送出9V/12V/14.5V甚至20V的电压。关于充电协议的话题我们已在前面一篇公众号做过讨论),同时具有一定的功率输出能力,例如5V/2A, 9V/1A等等规格。充电适配器属于AC-DC的技术范畴,平常所说的快充芯片其实是对适配器AC-DC芯片和手机端的开关式充电管理芯片(以 DC-DC技术为实现手段)的统称,但本文的快充芯片特指手机端的开关式充电管理芯片。

  2)充电线的任务就是负责把电压/电流从适配器端传送到手机端,由于目前绝大多数充电线实际上就是USB线。这里有一个参数需要提请大家注意。按照USB2.0的标准,线缆需要具备传送最大1.8A的电流能力,因此如果是5V的适配器,USB2.0的线缆最大能传送的功率其实只有9W。

  3)快充芯片的任务是把适配器的5V/9V/12V等电压转换成电池的电压,同时按照需要的充电电流精确可控地向电池进行充电。从技术上看,快充芯片是这四个环节中最具有挑战的部分,因此目前业界有能力提供高品质高可靠性的快充芯片的厂家十分有限,主要还是以德州仪器,仙童半导体等少数几家国外大厂为主,国内的希荻微电子经过几年坚持不懈的自主研发,已推出了一系列的快充芯片,打破了国外大厂的垄断局面,并已在各大手机方案商和品牌商得到广泛的应用。快充芯片具体的工作原理将在下文做详细讨论。

  4)电池是这个环节非常重要的部分,整个充电环节都是为了使电池快速而安全地充满电量。电池的主要参数包括:容量(mAH,手机中常见的有2000mAH, 3000mAH和4100mAH),充电截止电压(目前常见的有4.2V, 4.35V和4.4V规格,更高的充电截止电压,在同等的电池体积情况下,通常具有更高的电池容量,因此目前所谓的4.35V及以上的高压电池逐渐在手机上得到更广泛的应用),以及可接受的最大充电电流等等。其中,可接受的最大充电电流一般以nC来表示。例如一个3000mAH的电池,1C的充电速度是指一个小时之内即可充满电池,此时可接受的最大充电电流就是3A;如果允许2C的充电速度,那么理论上半小时就可以充满电池,则此时可接受的最大充电电流即为6A;以此类推等等。下文将会看到,电池的这几个参数将对选用合适的快充芯片产生直接的影响。

  二、经典的三段式充电

  其实给锂离子电池充电的过程和我们生活中用水龙头向洗脸盆放水的过程非常类似:

  第一阶段:当开始给一个空的脸盆放水的时候,为了不让水溅出来,会把水量控制得很小;第二阶段:等到脸盆底部积满了一定水位之后,才把水龙头开得比较大,脸盆里已有的水可以对这样急速的进水起到缓冲作用,从而不会有水花溅出;

  第三阶段:当水位快到脸盆顶部的时候,此时我们又会逐渐减小进水量,以防止有水冲出脸盆之外,直至积满整个水盆。

  电池就像这个脸盆,只不过它储存的不是水,而是电荷。电池的充电也有类似的三个阶段:

  第一阶段:涓流充电。电池的特点是,当电池电压(大致相当于水位)非常低的时候,其内部的锂离子活动性较差,内阻较大,因此只能接受较小的充电电流(一般在30到50mA左右),否则电池容易发热和老化,不仅损害电池寿命,而且有潜在的安全问题,因此把这个阶段称为涓流充电,也有同行将之称为线性充电或者预充电等等。

  第二阶段:恒流充电。当电池电压高于2V以上,电池的锂离子活动性被充分激活,内阻也较小,所以能够接受大电流的充电。在这个阶段,快充芯片会按照设定向电池提供可接受的充电电流,因此在这个阶段电池得到的电量也是最大的,可以占到容量的70%到80%以上。

第三阶段:恒压充电。电池是一个十分娇气的储能元件,它的电池电压不允许超过截止电压的±50mV,否则就会

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top