CAN总线位定时和同步的研究与设计
时间:07-05
来源:电子技术应用
点击:
引 言
控制器局域网CAN是一种用于连接汽车和工业场合中电子控制模块、传感器和执行器的串行、多主通信规范。由于CAN总线具有很强的纠错能力、支持差分收发、传输距离远等特点,因此CAN总线用途非常广泛,现已成为工业数据通信领域的主流技术、基础技术,目前比较流行的TTCan,DeviceNet,CANo-pen,SAE J1939等规范均是以CAN为基础的,因此对CAN总线的深入研究是十分必要的。在CAN规范中,位定时和同步机制是既重要又难于理解的环节之一,它不仅关系到对波特率、总线长度等相关内容的理解,甚至对节点开发的成功与否产生直接的影响。然而,目前相关文献均缺乏针对CAN总线位定时和同步机制的详细分析和探讨。在此以CAN技术规范为基础,深入分析CAN总线的位定时和同步机制,给出硬同步和重同步的定义,并给出相应的图解解释方式,对位时间的组成与结构、同步的发生时刻、同步是如何进行的等关键内容给出了明确而又具体的分析。这里的工作对理解位定时和同步机制的本质、指导位时间参数的设置均具有较高的参考价值。
1 位定时
1.1 位时间的组成
位时间(位周期)tB即1位的持续时间。正常位时间tNBT是正常位速率fNBT(在非重同步的情况下,借助理想发送器每秒发送的位数)的倒数,即tNBT=1/fNBT。正常位时间可划分为几个互不重叠的时间段,这些时间段包括:同步段(SYNC-SEG)、传播时间段(PROP-SEG)、相位缓冲器段1(PHASE-SEG1)、相位缓冲器段2(PHASE-SEG2)。每个时间段由整数个被称为时间份额tQ的基本时间单位组成。tQ是由振荡器周期tCLK派生出的一个固定时间单元。一个时间份额的持续时间通常便是CAN的一个系统时钟周期tSCL。tSCL可通过可编程的预引比例因子进行调整。每个位时间必须由8~25个时间份额组成。位时间的组成如图1所示。
位时间的各个时间段均有其特定的用途:
(1)同步段用于使总线上的各个节点同步,要求有1个跳变沿位于此段内,该段长度为1个时间份额;
(2)传播时间段用于补偿网络内的物理延时,它是信号在总线上传播时间、输入比较器延时和输出驱动器延时之和的2倍,该段长度为1~8个时间份额;
(3)相位缓冲器段1和相位缓冲器段2用于补偿沿的相位误差,通过重同步,相位缓冲器段1可被延长或相位缓冲器段2可被缩短。
这些时间段的长度均是可编程的。在常用的通信控制器(SJA1000)或PAC82C200中,合并传播时间段和相位缓冲器段1,称为时间段1(TSEGl),相位缓冲器段2称为时间段2(TSEG2),如图1所示。
采样点是这样一个时刻:在此时刻上,总线电平被读取并被理解为其自身的数值。它位于相位缓冲器段1的终点。在重同步期间,采样点的位置被移动整数个时间份额,该时间份额被允许的最大值称为重同步跳转宽度(SJW),它可被编程为1~4个时间份额。值得注意的是,重同步跳转宽度并不是位时间的组成部分。
1.2 位定时的作用
位定时是由节点自身完成的(可编程),节点进行位定时的作用为:
(1)确定位时间,以便确定波特率(位速率),从而确定总线的网络速度;或在给定总线的网络速度的情况下确定位时间;
(2)确定1位的各个组成部分--同步段、传播时间段、相位缓冲器段1和相位缓冲器段2的时间长度,其中同步段用于硬同步,位于相位缓冲器段1终点的采样点用于保证正确地读取总线电平;
(3)确定重同步跳转宽度以用于重同步。
2 CAN总线同步机制分析
CAN规范定义了自己独有的同步方式:硬同步和重同步。同步与位定时密切相关。同步是由节点自身完成的,节点将检测到来自总线的沿与其自身的位定时相比较,并通过硬同步或重同步适配(调整)位定时。在一般情况下,引起硬同步和重同步发生的、来自总线的沿如图2所示。
2.1 硬同步
CAN技术规范给出了硬同步和重同步的结果,但没有给出硬同步和重同步的定义。这里首先给出硬同步和重同步的定义,然后对其进行分析。
所谓硬同步,就是由节点检测到的,来自总线的沿强迫节点立即确定出其内部位时间的起始位置(同步段的起始时刻)。硬同步的结果是,沿到来时刻的前一时刻(以时间份额tQ量度),即成为节点内部位时间同步段的起始时刻,并使内部位时间从同步段重新开始。这就是规范中所说的"硬同步强迫引起硬同步的沿处于重新开始的位时间同步段之内"。硬同步一般用于帧的开始,即总线上的各个节点的内部位时间的起始位置(同步段)是由来自总线的一个报文帧的帧起始的前沿决定的。
同步段的时间长度为1个时间份额。如图3所示.来自总线的引起硬同步的沿在t1时刻到来,则节点检测到该沿。将t1时刻的前一时刻t0(以tQ为周期)作为内部位时间同步段的起始时刻。
控制器局域网CAN是一种用于连接汽车和工业场合中电子控制模块、传感器和执行器的串行、多主通信规范。由于CAN总线具有很强的纠错能力、支持差分收发、传输距离远等特点,因此CAN总线用途非常广泛,现已成为工业数据通信领域的主流技术、基础技术,目前比较流行的TTCan,DeviceNet,CANo-pen,SAE J1939等规范均是以CAN为基础的,因此对CAN总线的深入研究是十分必要的。在CAN规范中,位定时和同步机制是既重要又难于理解的环节之一,它不仅关系到对波特率、总线长度等相关内容的理解,甚至对节点开发的成功与否产生直接的影响。然而,目前相关文献均缺乏针对CAN总线位定时和同步机制的详细分析和探讨。在此以CAN技术规范为基础,深入分析CAN总线的位定时和同步机制,给出硬同步和重同步的定义,并给出相应的图解解释方式,对位时间的组成与结构、同步的发生时刻、同步是如何进行的等关键内容给出了明确而又具体的分析。这里的工作对理解位定时和同步机制的本质、指导位时间参数的设置均具有较高的参考价值。
1 位定时
1.1 位时间的组成
位时间(位周期)tB即1位的持续时间。正常位时间tNBT是正常位速率fNBT(在非重同步的情况下,借助理想发送器每秒发送的位数)的倒数,即tNBT=1/fNBT。正常位时间可划分为几个互不重叠的时间段,这些时间段包括:同步段(SYNC-SEG)、传播时间段(PROP-SEG)、相位缓冲器段1(PHASE-SEG1)、相位缓冲器段2(PHASE-SEG2)。每个时间段由整数个被称为时间份额tQ的基本时间单位组成。tQ是由振荡器周期tCLK派生出的一个固定时间单元。一个时间份额的持续时间通常便是CAN的一个系统时钟周期tSCL。tSCL可通过可编程的预引比例因子进行调整。每个位时间必须由8~25个时间份额组成。位时间的组成如图1所示。
位时间的各个时间段均有其特定的用途:
(1)同步段用于使总线上的各个节点同步,要求有1个跳变沿位于此段内,该段长度为1个时间份额;
(2)传播时间段用于补偿网络内的物理延时,它是信号在总线上传播时间、输入比较器延时和输出驱动器延时之和的2倍,该段长度为1~8个时间份额;
(3)相位缓冲器段1和相位缓冲器段2用于补偿沿的相位误差,通过重同步,相位缓冲器段1可被延长或相位缓冲器段2可被缩短。
这些时间段的长度均是可编程的。在常用的通信控制器(SJA1000)或PAC82C200中,合并传播时间段和相位缓冲器段1,称为时间段1(TSEGl),相位缓冲器段2称为时间段2(TSEG2),如图1所示。
采样点是这样一个时刻:在此时刻上,总线电平被读取并被理解为其自身的数值。它位于相位缓冲器段1的终点。在重同步期间,采样点的位置被移动整数个时间份额,该时间份额被允许的最大值称为重同步跳转宽度(SJW),它可被编程为1~4个时间份额。值得注意的是,重同步跳转宽度并不是位时间的组成部分。
1.2 位定时的作用
位定时是由节点自身完成的(可编程),节点进行位定时的作用为:
(1)确定位时间,以便确定波特率(位速率),从而确定总线的网络速度;或在给定总线的网络速度的情况下确定位时间;
(2)确定1位的各个组成部分--同步段、传播时间段、相位缓冲器段1和相位缓冲器段2的时间长度,其中同步段用于硬同步,位于相位缓冲器段1终点的采样点用于保证正确地读取总线电平;
(3)确定重同步跳转宽度以用于重同步。
2 CAN总线同步机制分析
CAN规范定义了自己独有的同步方式:硬同步和重同步。同步与位定时密切相关。同步是由节点自身完成的,节点将检测到来自总线的沿与其自身的位定时相比较,并通过硬同步或重同步适配(调整)位定时。在一般情况下,引起硬同步和重同步发生的、来自总线的沿如图2所示。
2.1 硬同步
CAN技术规范给出了硬同步和重同步的结果,但没有给出硬同步和重同步的定义。这里首先给出硬同步和重同步的定义,然后对其进行分析。
所谓硬同步,就是由节点检测到的,来自总线的沿强迫节点立即确定出其内部位时间的起始位置(同步段的起始时刻)。硬同步的结果是,沿到来时刻的前一时刻(以时间份额tQ量度),即成为节点内部位时间同步段的起始时刻,并使内部位时间从同步段重新开始。这就是规范中所说的"硬同步强迫引起硬同步的沿处于重新开始的位时间同步段之内"。硬同步一般用于帧的开始,即总线上的各个节点的内部位时间的起始位置(同步段)是由来自总线的一个报文帧的帧起始的前沿决定的。
同步段的时间长度为1个时间份额。如图3所示.来自总线的引起硬同步的沿在t1时刻到来,则节点检测到该沿。将t1时刻的前一时刻t0(以tQ为周期)作为内部位时间同步段的起始时刻。
- 基于CAN总线的模拟射击训练系统设计(07-19)
- 基于“网络通”的单片机以太网-CAN网关的应用(01-25)
- 基于RealView MDK的CAN总线仿真研究(06-20)
- 改善CAN电磁兼容性的措施(01-19)
- 无线传感器网络简介(08-19)
- 功率计和功率传感器工作原理(12-24)
閻忓繐瀚伴。鑸电▔閹捐尙鐟归柛鈺冾攰椤斿嫰寮▎鎴旀煠闁规亽鍔忓畷锟�
- 濡ゅ倹岣挎鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
闁稿繈鍔嶉弻鐔告媴瀹ュ拋鍔呭☉鏃傚Т閻ㄧ姵锛愰幋婊呯懇濞戞挻姘ㄩ悡锛勬嫚閸☆厾绀夐柟缁樺姇瀹曞矂鎯嶉弬鍨岛鐎规悶鍎扮紞鏃堟嚄閽樺顫旈柨娑樿嫰婵亪骞冮妸銉﹀渐闂侇偆鍠愰崹姘舵⒐婢舵瓕绀嬪ù鍏坚缚椤懘鎯冮崟顐ゆ濡増鍨垫导鎰矙鐎n亞鐟�...
- 濞戞搩鍘炬鍥╀焊閸曨垼鏆ョ€规悶鍎抽埢鑲╂暜閸繂鎮嬮柟瀛樺姇閻撹法鎷嬮鐔告畬缂佸顑呴〃婊呮啑閿燂拷
缂侇噣绠栭埀顒婃嫹30濠㈣埖宀稿Λ顒備焊閸曨垼鏆ラ柛鈺冾攰椤斿嫮鎷犻崜褉鏌ら柨娑樺缁楁挾鈧鍩栧璺ㄦ嫚閹惧懐绀夐柛鏂烘櫅椤掔喖宕ㄥΟ鐑樺渐闂侇偆鍠曢幓顏堝礆妫颁胶顏卞☉鎿冧簻閹酣寮介悡搴f濡増鍨垫导鎰矙鐎n亞鐟庨柣銊ュ椤╋箑效閿燂拷...
- Agilent ADS 闁轰焦鐟ラ鐔煎春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
濞戞挻鎸搁宥夊箳閸綆鍤﹂柨娑樿嫰閸欏繘妫冮姀锝庡敼閻熸瑯鏋僁S闁告艾瀚~鎺楀礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁遍亶宕濋埡鍌氫憾闁烩偓鍔嶅〒鍫曟儗椤撶姵鐣遍柡鍐ㄧ埣濡法鈧冻缂氱槐鐧咲S...
- HFSS閻庢冻缂氱弧鍕春绾拋鍞查悹鍥у⒔閳诲吋绺藉Δ鍕垫
閻犙冨缁讳焦绋夐幘鎰佸晙闁瑰搫鐗愰鎶芥晬鐏炶棄寮块梻鍫涘灱椤斿骞掗崷娆禨S闁汇劌瀚慨娑㈡嚄閽樺瀚查幖瀛樻⒒閺併倝鏁嶇仦钘夌盎闁告柡鏅滈崑宥夊礂閵娾晜妗ㄧ紒顖濆吹缁椽宕烽弶娆惧妳濞戞梻濮电敮澶愬箵椤″锭SS...
- CST鐎甸偊鍠楃亸婵嗩啅閵夈倗绋婇悗骞垮€曢悡璺ㄦ媼椤撶喐娈岀紒瀣儏椤ㄦ粎鎲楅敓锟�
闁哄瀛╁Σ鎴澝虹€b晛鐦滈悹浣筋嚋缁辨繈宕楅妸鈺傛〃閻犱礁寮跺绶維T闁告艾瀚伴妴宥夊礉閻旇鍘撮柛婊冭嫰娴兼劗绮欑€n亞瀹夐柣銏╃厜缁辨繈宕濋埡鍌氫憾闊浂鍋婇埀顒傚枙閸ゆ粎鈧冻闄勭敮澶愬箵椤″T閻犱焦宕橀鍛婃償閺冨倹鏆�...
- 閻忓繐瀚伴。鍫曞春閾忚鏀ㄩ柛鈺冾攰椤斿嫮鎷犻崜褉鏌�
濞戞挸娲g粭鈧Δ鍌浬戦妶濂哥嵁閸愬弶鍕鹃悹褍鍤栫槐婵囨交濞嗗海鏄傞悹鍥у⒔閳诲吋绋夋潪鎵☉闁革负鍔岄惃鐘筹紣閹寸偛螚闁哄牜鍨堕。顐﹀春閻旀灚浜i悘鐐存礃鐎氱敻鎳樺鍓х闁瑰灚鎸风粭鍛村锤濮橆剛鏉介柣銊ュ缁楁挻绋夊顒傚敤缁绢厸鍋�...
- 鐎甸偊鍠楃亸婵堜焊閸曨垼鏆ユ繛鏉戭儔閸f椽骞欏鍕▕闁糕晝顢婇鍕嫚閸撗€鏌ら柛姘墦濞夛拷
閻犳劦鍘洪幏閬嶅触閸儲鑲犻柡鍥ㄦ綑閻ゅ嫰骞嗛悪鍛缂傚啯鍨甸崹搴ㄥΥ娓氣偓椤e墎鎷崣妯哄磿闁靛棔鑳堕妵姘枖閵忕姵鐝ら柕鍡曟娣囧﹪宕i柨瀣埍闁挎稑鏈崹婊呮啺娴e湱澹夐柡宥夘棑缁ㄥ潡鏌呴敓锟�...
栏目分类