微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 车载电子设备不可或缺的EMC/EMI

车载电子设备不可或缺的EMC/EMI

时间:05-02 来源:网站整理 点击:

切勿过快:设计人员常会担心时间误差,因此选择最快逻辑组件来缩小时间误差,但超快逻辑组件的脉冲边缘陡峭,且频率非常高,往往会产生EMI。若想减少系统EMI量, 可选择符合时间需求的低速逻辑组件,或者许多FPGA可降低驱动强度,借此降低边缘速率。有时亦可使用逻辑电路上的串联电阻,减低系统讯号内的转换速率。

  接地电路短:电流进入芯片后都会流出,本文介绍的几项设计技巧中,和芯片连接距离都很近,例如旁路电容接近芯片、回路愈小愈好等,但设计人员常忘记接地电流路径必须回到 源头。在理想情况下,电路板有一层专用于接地,与GND的路径也该和取道相去不远。但在有些电路板的配置中,接地平面设有断流器,会迫使接地电流从芯片返 回电源时选用较长路径,而GND电流使用这条路径时,也会如天线般传送或接收噪声。

  供电线电感:前面曾说明利用旁路电容抵销电流突增的冲击,这在供电线上的电感功能也是相同的。在电源在线设置电感或铁氧磁珠后,强制与电源线相连的电路自旁路电容汲取电源,而非直接向电源取电,从而满足其动态功率需求。

  开关电源输入限制:为了解决EMI问题,必须尽可能降低dv/dt与di/dt,DC/DC转换器看似完全无害,但它其实无法直接从DC转换至DC,而是从DC至AC再转换至DC,在转换期间,AC就可能产生EMI问题。

  车用设计人员常担心AM无线电频段会造成干扰,车辆大多数均配备AM无线电,这种高增益放大器相当敏感,可调谐频率范围介于500kHz至1.5MHz之 间,若组件在此频率内发送讯号,就可能在AM无线电中听见。许多开关电源的频率都位于此频段中,可能对汽车应用造成问题,故多数车用开关换电源均使用高于 此频段以上的切换频率——通常是超过2MHz,若开关电源的输入或输出过滤不足,部份噪声就可能进入对基频或次谐波频率敏感的子系统。

  注意共振:电感与电容经常用于避免可能发生EMI的dv/dt及di/dt问题,但电感与电容也可能造成自共振,不过,通过增加电阻与电感并联,吸收振荡产生的能量,可避免引发问题。另一种潜在问题来自串联电感(独立组件或电源线的寄生电感)连接至具有旁路电容的组件,由此形成的L-C电路可能在共振频率中振荡,同样地,这项问题也可藉由增设与电感并联的电阻加以解决。

  展频频率降低峰值辐射:在FPD-Link串行/解串行器(SerDes)等组件中,数据总线与频率通常具备展频频率选项,在展频频率中,频率讯号经过调变,导致频率与数据讯号的边缘涵盖的频段更加广泛,由于EMI规格可限制频段内任何频率的峰值辐射,因而扩大频段覆盖范围有助于降低噪声峰值。

  DS90UB914A-Q1解串行器即为一例,它通常搭配DS90UB913A-Q1串行器使用,在先进驾驶辅助(ADAS)系统的摄影机与处理器之间建立视讯链接,解串行器将摄影机的影像传感器频率送至串行器,并输出频率与数据供处理器使用。高速频率内同时转换的10至12条高速资源电路,即为EMI的一大主要来源,为了降低此EMI,DS90UB914A可在输入数据内使用展频频率,而非影像传感器提供的低抖动频率,该展频频率透过解串行器的缓存器进行控制。

  当今的汽车除了娱乐及舒适功能外,许多重要运作也仰赖电子设备,更需要确保运作不因干扰出错,以及不至于干扰车内的其他系统。工程师可遵循文中介绍的诀窍与技巧,并慎选适当组件,即可设计出更稳健的系统,确保车用系统不受EMI问题干扰,从而更加可靠地运作。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top