T/R组件波束控制测试方案设计
较电压设置,CH1~CH4为被测器件输出端口,FCH1~FCH4为FPGA 接收端口。通过设置MAX901比较电压,可以测试器件不同电压输出时的逻辑功能。D1~D4的作用是指示,方便调试。
图5 比较器电路原理
4.3 可编程部分
可编程器件选用Xilinx 的一款低端产品XC3S50AN,这是因为测试中仅利用丰富的IO资源和向量存储,没有太高的要求,选用低端产品就足够了。图6所示为JTAG的配置,用于FPGA程序下载。电源模块电路原理如图7所示,只需两种电源,内核为1.2V,辅助电压及端口电压设置成3.3V。
图6 JTAG 配置
图7 电源模块电路原理
时序仿真可以采用两个可编程器件,一个用于数据发送及开关控制,另一个用于数据接收及功能判断。图8所示为数据发送FPGA 的仿真波形,S为FPGA输出开关控制信号;delay_sn,delay_clk,delay_clr三个信号为开关控制输入信号,实现将串行数据并行输出;P为FPGA输出给被测器件的信号,由duTIn_r,duTIn_s,duTIn_clk,duTIn_clr,IN 控制输入。可以看出,用FPGA产生时序是比较理想的选择。
图8 输入时序仿真
图9所示为数据接收FPGA仿真波形。CH 接收存储被测器件逻辑值,datain,dataclk,address用于设置理想逻辑值。PASS,FAIL 为输出状态指示。
图9 功能判断仿真
4.4 测试结果
图 10所示为按本文方案制作的波控电路测试系统照片。左上图为两个FPGA,一个用于数据发送,一个用于数据接收判断;右上图为系统电源模块,下图为系统组合。该系统可实现16位以内输入,64位以内输出的常规波束控制电路的全参数测试。表2列出一款32位T/R组件波束控制电路实测结果。其中,比较器的比较电平设置为4.8V和0.2V,因此,输出高电平≥4.8V,低电平≤0.2V。
图10 波控电路测试系统实物照片
表2 测试结果
5 结论
波束控制电路专用性强,输入输出接口较多,时序严格,逻辑功能复杂,其测试较为复杂。本文提出一种测试方案。该方案简单,易于实现,充分利用FPGA丰富的 IO 资源及可编程特点,很好地解决了波束控制电路测试中的难点。同时,该方法易于实现常规波控电路测试系统的通用性,仅仅需要定义好测试系统转接部分的输入接口,以及编写不同的发送和接收程序,便可实现常规波控电路的通用性。
作者: 李涛 晏开华 电子科技大学 中国电子科技集团第24研究所 微电子学
- LT3751如何使高压电容器充电变得简单(08-12)
- 三路输出LED驱动器可驱动共阳极LED串(08-17)
- 浪涌抑制器IC简化了危险环境中电子设备的本质安全势垒设计(08-19)
- 严酷的汽车环境要求高性能电源转换(08-17)
- 适用于工业能源采集的技术 (08-10)
- 单片式电池充电器简化太阳能供电设计(08-20)