自适应实时DSP架构解决方案应对电网优化挑战
电子发烧友网12月"处理器与DSP特刊"火热下载中,缺你怎可!
过去几十年来,电源系统呈指数式增长,其非线性特性引起了严重的谐波污染,这可能带来多方面的不利影响,例如:电气设备过热和过早老化,传输线路损耗增加,以及继电器保护失灵等,因此,业界越来越关注谐波污染问题,并采取了各项措施以实现更好的电网管理。其中,最佳的一个方法是在电网内设置更多的观测和分析点,并且延长监控时间。随着智能电表在全世界范围内的加快部署,满足上述要求的最佳器件可能能通过其来实现。用于智能电表的ASIC集电能计量特性与谐波分析功能于一身,可能是最适合当下的理想解决方案。考虑到一块芯片内要嵌入大量DSP资源,同时又必须廉价、尺寸小、功耗低,可想而知频谱分析绝非易事。本文将讨论一种尝试满足所有这些需求的DSP架构解决方案。
基频估算和频谱成分提取
电网上不断变化的负载与相对恒定的发电输出之间存在一种动态的平衡关系,这导致在负载较高时,主电源频率会略微降低,而在负载较低时,主电源频率会略微提高。在电网高度发达并受到密切监控的国家,频率偏移量相当小,但在电网控制不佳的地区,频率偏移量可能大到足以影响电气设备。为此,业界已进行大量研究工作,试图找到通过优化各种参数,如精度、速度、噪声和谐波抗扰度等,来实现跟踪频率的最有效方法。
就电源系统的安全性、稳定性和效率而言,电网的频率是与电流和电压同等重要的工作参数。可靠的频率测量是有效的进行电源控制、负载减轻、负载恢复和系统保护的先决条件。检测和估算频率的方法有许多种。例如,过零方法通过测量两个相继过零点之间的时间间隔来检测频率,这种方法的优点是非常容易实现,缺点是精度较低,并且易受谐波、噪声、直流成分等影响。基于DFT的算法可以利用采样序列来估算频率,但它对输入信号中的谐波非常敏感。针对本文所述的DSP架构,我们考察了一种基于数字PLL的方法,发现它很有效,具有高抗扰度,同时还能提供精确的频率估算。
图1:基于数字PLL结构的频率估算
图1所示为标准数字PLL结构及其三个主要模块。相位误差检波器将输出发送到环路滤波器,环路滤波器进一步控制一个数字振荡器,目的是最大程度地降低相位误差。因此,最终可以获得输入信号基频的估算值。控制环路经过优化,在45Hz到66Hz的标准电网频率范围内可提供最佳的锁定参数性能。
知道了要从频谱中提取的成分的精确频率后,我们就可以考察各种用于提取的选项。谈到采样系统的频谱分析,我们自然会想到利用离散傅里叶变换(DFT)这个工具将信号从时域映射到频域。有多种数值算法和处理架构专门用于实现这种变换,FFT是其中最著名的一种。对比考虑提取的信息量和所需的DSP资源量,每种方法都有其优点和缺点。
有一种交流电源系统理论使用复平面中的相量来代表电压和电流,该理论与一种以类似格式提供频谱成分的DFT变化形式相一致。从根本上说,在目标频率直接实现DFT公式也能达到同样的效果。但是,为使测量具有实时性,我们采用了一种从DFT公式获得求和元素的递归方法。实施方式有多种(取决于可用的DSP资源),但必须牢牢控制一个重要方面,这就是最大程度地降低频谱泄漏和噪声引起的误差。
图2:提取基波和谐波频谱成分
图2以框图形式说明了频谱成分提取的工作原理。某一相的采样电压和电流与基波频率值一起通过一个计算模块,该计算模块以相量形式提供计算结果。针对每个基波频率和某些用户可选的谐波频率,都会提供一对相量(电压和电流)。有了这些分量之后,我们就可以运用电源理论中的已知方法来提取RMS值和功率。RMS值相当于这些相量的幅度,视在功率则等于这些幅度的乘积。将电流相量直接投影到电压上并将二者相乘,就可以获得有功功率。分解电流的另一个正交元素与电压相乘就得到无功功率。
说到这里,我们要讨论一下采用实时方法的可能优点(动机)。例如,这种架构能够很好地监控变压器中的浪涌电流。这种电流发生在变压器通电期间,由磁芯的部分周期饱和引起。
初始幅度为额定负载电流的2到5倍(然后慢慢降低),并具有极高的二次谐波,四次和五次谐波也会携带有用的信息。如果只看总RMS电流,浪涌电流可能会被误认为短路电流,因而可能错误地让变压器退出服务。为了识别这种情形,必须获得二次谐波幅度的精确实时值。
当我们只需要几个谐波的信息时,运用完整的FFT变换可能不是非常有效。这种有选择地计算几个谐波成分的方法可能比FFT方法更有效
- ADI力推低成本AFE 助力可携式医疗应用(09-30)
- ADI医疗应用:检测并区分心脏起搏伪像(11-17)
- ADI模拟前端芯片AD8232新应用_远程心电监测仪(11-09)
- ADI公司:心脏起搏伪像的检测与识别(03-02)
- 浅谈ADI智能电网的全程解决方案(03-09)
- 基于视觉的ADAS解决方案,近在咫尺!(05-07)