微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于MSP430F169的程控开关稳压电源的设计

基于MSP430F169的程控开关稳压电源的设计

时间:02-04 来源:互联网 点击:

越大,线径越小,但是所允许经过的电流越小,并且开关损耗增大,效率降低。本系统采用的频率为44K,查表得知在此频率下的穿透深度为0.3304mm,直径应为此深度的2倍,即为0.6608mm。选择的AWG导线规格为21#,直径为0.0785cm(含漆皮)。磁芯选择铁镍钼磁芯,该磁芯具有高的饱和磁通密度,在较大的磁化场下不易饱和,具有较高的导磁率、磁性能稳定性好(温升低,耐大电流、噪声小),适用在开关电源上。

  2.2.2 控制电路设计与参数设计:

  控制电路选用TI的TL494来产生PWM波形,控制开关管的导通,Rt,Ct选择为102和24K,频率为,为44KHz。软启动电路由14脚和4脚接电阻和电容来实现,通过充放电来实现。启动时间为10mS, Ct=10uF,Rt=1K。13号脚接地,采用单管输出,进一步降芯片内部功耗。TL494如下图。

  

  2.2.3 效率的分析:

  输出功率计算公式:η=Po/Pi ,输入功率计算公式:Pi=Ui*Ii 。

  由于题目要求DC/DC变换器(控制器)都只能由Uin端口供电,不能另加辅助电源,所以单片机及一些外围电路消耗功耗要尽量的低。为此,在设计本系统时单片机采用超低功耗单片机MSP430F169,该系统集成了8路12位A/D和两路12位D/A.减少了外加A/D和D/A的功耗。提高效率主要是要降低变换器的损耗,变换器的损耗主要有MOSFET导通损耗, MOSFET 开关损耗 MOSFET 驱动损耗,二极管的损耗、输出电容的损耗,和控制部分的损耗,这些损耗可以通过降低开关频率等方法来降低。各级损耗主要有:1.导通损耗:;2.开关损耗: ;3.门级驱动损耗: ;4.二极管的损耗: ;5.输出电容的损耗:

  具体损耗如下:

  导通损耗和开关损耗,主要是针对开关管来说,这个根据选取IRP540,功耗为0.4W.

  2.另外一个主要损耗为二极管损耗,二极管正常导通压降为0.7V,损耗为Pd=0.7*Ii,门级驱动和输出电容损耗,主要是选取低功耗的器件,和低ESR的电容。

  2.2.4 保护电路设计与参数设计:

  康铜电阻的大小选择:康铜丝主要起两个作用,过流保护和测试负载电流。康铜丝接在整流输入地和负载地之间,越小越好,这样会使两个地之间的电压很小。但是如果太小由于干扰问题会造成过流保护的误判,并且对于后级运放的要求比较高,经过实验,选择0.1欧姆的电阻效果比较好。由于电阻太小,难以测量,所以先测得1欧姆的电阻,然后截取其长度的十分之一。

  TL494片内有电流误差放大器。可用于过流保护。康铜电阻上的压降,与预先调好的值进行比较。若电流过大,输出高电平,阻止PWM信号产生,开关管处于关断状态,使输出电压降低,形成保护功能。一旦输出电压降低,导致输出电流降低,检测电压降低,电流误差放大器就会输出低电平,重新产生PWM波形,所以该电路具有自恢复功能。

  2.2.5 数字设定及显示电路的设计:

  由于在输出端采样时测得的反馈电压为输出电压的二十四分之一,即分压为1.5V时输出为36V,分压为0.834V时输出为30V,设计中采用了12位D/A转换精度为0.61mV(参考电压为2.5V),直接输出给TL494提供参考电压。此外还设置了三个A/D芯片,分别采集输出电压,输出电流,和输入电流。为了降低功耗,设计中采用了128*64,屏幕大,显示内容多,当背光不使用时自动关闭,以降低功耗。

  2.3 硬件电路设计

  2.3.1 主电路图如下:

  

  2.3.2 主CPU PCB图如下:

  

  2.4 软件设计

  本设计的软件设计比较简单,完全出于效率的要求,把外围电路设计的尽可能的少,所以单片机驱动外围芯片均采用I/O口直接控制,没有采用总线方式。整体软件设计流程图如图6。

  

  三、 结论

  通过寻找一系列资料和电路的设计,调试,最后取得了非常好的效果,各个技术指标都达到很高的水准。但电路仍然存在很多问题,例如采用超低功耗单片机在电源设计中,单片机的抗干扰能力不好,以后应多加注意。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top