微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于DSP和CPLD的智能开关电源数字控制器的设计与实现

基于DSP和CPLD的智能开关电源数字控制器的设计与实现

时间:02-07 来源:互联网 点击:

可靠运行。

  保护电路采用窗口比较电路,分别检测功率开关管的过流信号,输出的短路信号和散热器的过热信号。设定保护的阀值,一旦出现任何异常,就可以立刻将保护信号送入DSP 功率保护引脚PDPINT或者外部中断信号IOPE-2,通知控制系统并采取相应的措施:对于原边的短路以及副边的短路采用不可恢复的保护方式,立刻关闭 PWM驱动信号,切断电源的输入,以防止其它更严重的危险发生;对于散热器过热等可恢复的保护信号,则暂时关闭PWM输出,等状态恢复后再重新恢复工作。

  2.5外部接口

  本文设计的数字控制器外部接口包括外部控制I/O接口和外部通讯接口。

  利用DSP内部的I/O口来实现外围的附加控制功能,如:指示灯显示、主电路的缓起控制、输出接触器的控制、散热风扇的开关控制等;

  外部通讯接口包括CAN总线接口和RS232接口。CAN总线接口可满足远距离数据传输要求,RS232接口可与人机设备接口。

  外部CAN总线通讯接口采用TMS320LF2407A芯片的CAN 控制器接口,利用用82C250作为CAN驱动芯片和外部设备通讯。CAN驱动芯片82C250单独供电,通过光耦将DSP内部CAN控制器的引脚CANRX和CANTX和驱动芯片82C250隔离,以减少数字信号对CPU的干扰。

  RS232通讯接口利用TMS320LF2407A芯片包含的串行通信接口SCI模块,它支持CPU与其他使用标准格式的异步外设之间的数字通讯。SCI接收器和发送器是双缓冲的,每一个都有它自己单独的使能位和中断标志位。两者都可以独立工作,或者在全双工的方式下同时工作。本文设计中,CPU的SCI模块引脚SCIRX和SCITX通过光耦隔离后和RS232串口驱动芯片MAX232相连接,MAX232的输出采用3线传送方式,信号通过高速光耦隔离后与外部设备连接。

  3.数字化充电电源应用试验

  近年来,国内电动车相关技术迅速发展,如何解决动力电池的快速而方便充电问题,成为电动车产业化链中非常重要的一环。而本文设计的数字控制器能很好的适应数字化充电电源对控制器的要求,并进行了应用试验。

  采用本文设计的数字化控制器的数字化充电电源主电路拓扑如下图5所示。

  主电路开关器件采用IXYS公司的新型功率型MOSFET器件IXFN44N80(44A,800V,有续流二极管),输出整流二极管采用DESI2*61-10B(60A、1000V快恢复二极管),输出滤波电感1mH,谐振电容0.022µF,电路工作频率fs=80kHz,死区时间1µs。

  
图5 主电路拓扑

  数字化充电电源通过CAN2.0协议与动力电池组的BMS(电池管理系统)通讯,采集电池的相关数据(电池电压、电池温度、电池充电状态等),为充电管理提供参考数值;通过RS232协议与计算机通讯,记录相关数据。试验框图如下图6所示。

  
图6 试验框图

  试验中充电方法采用典型的电池三阶段恒流方式,数字化充电电源输入为三相交流电,输出直流电压范围300V~720V,输出电流范围0~30A。

  
图7 电池充电试验曲线

  动力电池组采用电动车用镍氢动力电池组(由426只单体组成,标称电压511V),充电采用三阶段恒流充电方法。

  试验充电曲线如图7所示。数字化充电电源充电效率≥90%,稳压精度不大于1%,稳流精度不大于1%。

  4 结论

  经过数字化充电电源应用试验,本文设计的移相全桥谐振软开关数字控制器不仅实现了功率器件驱动、保护等主电路控制功能外,还提供了丰富的外部通讯接口(CAN总线:CAN2.0协议;串口通讯:RS232协议),以及外部设备控制功能,通过DSP和CPLD编程,实现不同类型功率模块、不同输出要求的开关电源数字化控制。

  本文的创新点在于利用DSP的强大数据处理功能和CPLD可编程特点,设计了具有数字化、智能化、通用性好的开关电源数字控制器,使得应用该数字控制器的开关电源具有很高的响应速度,能实现复杂的输出特性,如满足电池充电过程中针对不同的充电策略所要求的充电曲线等,因此具有较广的应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top