在手持式触摸屏系统中增添接近检测传感器
本应用笔记讨论了Maxim MAX44000接近检测传感器在手持式触摸屏应用中的优势,介绍了设计中的注意事项。包括如何降低系统中的串扰、改善噪声抑制、减轻应用处理器的负荷。
为什么使用接近检测传感器?
触摸屏已普遍用于各种手持式电子设备,不仅仅局限于智能手机。触摸屏在大大改善设备功能性的同时,也带来了诸多新的挑战,包括知道如何以及何时响应触摸屏操作。例如,当手机靠近用户脸颊时,屏幕必须了解如何对其做出反应;否则,触摸屏无意接触到人耳或脸颊时,可能会被错误地解析成用户输入。
为了避免这一问题,最常见的方法是在手机上集成一个接近检测传感器(同时也增加了设备功能)。当接近检测传感器的读数达到一定的门限要求,而且用户正在通电话时,传感器可以关闭触摸屏。
相对于分立式解决方案,提供数字输出的红外接近检测传感器芯片(例如MAX44000)大大简化了这一功能的实施。
Maxim接近检测传感器的关键优势
Maxim的接近检测传感器具有众多优势。举例来说,红外发射器配置为吸电流,而非源出电流。便于用户合理选择LED的供电电压,优化LED性能和功耗(图1)。
图1. MAX44000典型电路,包括LED。
由于MAX44000系列产品提供I²C接口,可以方便地通过这一灵活的总线将传感器集成到多数嵌入式系统。此外,器件支持硬件中断。这两项功能可确保传感器无缝集成到大多数手持设备,同时也将传感器信息处理所占用的处理器资源降至最少。
不仅如此,Maxim的接近检测传感器还内置了更多功能。例如,MAX44000在6引脚单芯片内集成了环境光检测传感器和接近检测传感器。诸如此类的解决方案避免了在实现全部光传感器功能是使用多个传感器。
设计考虑
MAX44000采用小尺寸、2mm x 2mm x 0.6mm、UDFN-Opto封装,有助于用户节省尺寸敏感应用的空间。此外,传感器提供LED驱动电路,但需要用户提供发射二极管的供电电源。吸电流配置下,该电路可驱动0mA至110mA电流流过发射二极管,无需外部电路既可完成这一任务。
图2. MAX44000典型电路,带有发射器旁路。
使用该功能时需要谨慎设计,特别是当驱动电流较大时。短时间的大电流驱动脉冲使得电源上出现尖峰电流,可能在MAX44000周围产生噪声。有两种方式解决这一问题:对发射二极管进行去耦,或将MAX44000的电源与发射二极管电源隔离开。去耦电容的优点是价格便宜,但缺点是必须非常靠近MAX44000和发射二极管安装。由于这一方式多数情况下足以解决上述问题,终端用户应首先尝试这一方案,然后再考虑采用替代方案。图2所示电路同时采用了两种方案,当然,实际应用中并不需要这样。
设计者必须仔细考虑玻璃对接近检测传感器的影响。绝大多数智能手机屏幕上都带有一个玻璃罩,而且有些手机使用的是黑色玻璃。玻璃对光传感器的影响主要表现在两个方面:首先,应该考虑入射到IC环境光传感器的光强有所衰减;其次,LED的发射光经过玻璃反射后重新回到传感器,由此可能引入一定串扰(图3)。
图3. 串扰示意图—无挡光板。
图4. 简单挡光板的例子。
缓解这一问题的方法有许多种,一种方式是在发射器和接收器之间安装挡光板(图4),可大幅降低反射后注入传感器的光强;另一种方式是使发射器和接收器尽量靠近玻璃,确保电路板没有反射。
开/关门限的设置
将接近检测传感器集成到系统后,一个经常遇到的问题是如何正确选择接近检测的门限,以便在用户通话期间打开或关闭屏幕。门限设置须确保出现错误判断的几率非常低,而且能够支持绝大多数使用者的情况。例如,对于浅色头发的用户,当手机的接近检测传感器面向头发的方向靠近时,所反射的信号强度要远远高于深色头发。
MAX44000的接近检测传感器对于标准的850nm IR发射器具有出色的灵敏度(2.7nW/cm²/LSB)。这意味着MAX44000不仅可以在黑色玻璃的下方有效检测信号,对于深色头发的用户同样可以保持有效的信号检测。此外,MAX44000的接近检测传感器能够抑制高达100,000 lux的直射太阳光强,确保室外环境下的工作性能。
最后一项需要考虑的因素是对传感器增加一个滞回,采取这一措施的原因与在比较器电路增加滞回的原因相同。当输入信号恰好位于门限附近时,任何噪声都会造成输出信号的随机切换,这是我们不希望发生的现象。接近检测传感器也是如此。
一种简单(但功耗较大)的软件实施方案是定期轮询传感器,如果超出门限的计数值达到一定限值,而且屏幕是打开的,则关闭屏幕;否则,如果屏幕已关闭
- MAX1358在电化学法血糖仪中的应用电路图(08-26)
- MAX9913在三电极电化学葡萄糖仪中的应用电路(08-26)
- MAX1472在RF发射器应用中的典型工作电路图(08-27)
- Maxim可穿戴式医疗保健监视设备设计方案(07-04)
- 一文掌握电动汽车电池管理方案(04-10)
- Maxim带EEPROM高度集成PMIC MAX17106(02-16)