STC15F104E的STC单片机自动下载系统设计
引言
STC单片机下载程序不需要编程器烧写,可以通过串口下载。美中不足的是,STC单片机下载时必须进行冷启动,即下载信号加到单片机串口以后必须对单片机断电再上电,这给用户带来了一些不便。尤其是反复调试程序需要多次下载时,显得更加繁琐。
为了解决这一问题,有必要研制一种STC单片机专用的自动下载系统,使系统接收到上位机发往单片机的下载信号后,自动冷启动STC单片机,完成下载任务。
1 原理分析
STC单片机下载时,需要使用宏晶公司提供的STCISP软件。下载开始时,上位机软件首先向单片机发出下载命令。自动下载系统收到上位机对单片机发出的下载命令后,实现对单片机的断电、上电冷启动操作。单片机经冷启动后,收到命令数据流后作出回应,开始下载程序。需要注意的是,单片机在正常工作中,串口有可能接收数据,由于自动下载系统与单片机串口连接,因而系统必须具有自动判断接收的数据流是否为下载命令的能力,保证及时冷启动目标单片机。
为了检测下载程序的命令数据流,可以采用如下方法:从PC的串口引出连接线,接至PC的另一个串口,用串口调试助手打开;用STC-ISP软件发送下载命令,可以检测到在波特率为9 600 bps的情况下,该软件持续向单片机发送十六进制的0x80;当自动下载系统连续接收到足够数量的0x80时,即可判定接收到了下载命令数据流,从而进入冷启动程序。
2 系统硬件设计
2.1 主控芯片STC15F104E简介
自动下载系统需要接收上位机发往目标单片机的下载命令程序流,并对目标单片机进行冷启动。STC15F104E是宏晶公司研发的一款单片机,具有省去一些外部电路而功能较全面的优点。
该单片机的特点有:
◆内部集成了可靠复位,省去了外部复位电路。
◆内部集成了R/C时钟(在常温下仅有5‰温漂),省去了外部晶振。
◆内部集成了2个16位可重装载定时器,与普通8051单片机兼容。
◆为DIP8/SOP8封装,体积较小,功耗较低。
◆增强型8051内核,单时钟周期,信号处理速度快,实时性较好。
由于STC15F104E可以省去传统单片机的复位电路、外部晶振电路,且采用贴片封装,因此占用电路板面积非常小,适合集成在电路板上,因而作为本系统的主控芯片。
2.2 主控电路
如图1所示,整个系统以STC15F104E为核心进行设计。STC15F104E的P3.0脚与目标单片机STC89C52RC的串口接收端相连,即将发往目标单片机的信号连接到自动下载系统,实现信号的获取和处理。由丁自动下载系统不需要发出任何信息,STC15F104E的P3.1引脚悬空,不与目标单片机相连。
对目标单片机进行冷启动,实现断电、再上电,可以用三极管作为电子开关实现。必须注意到的是,三极管的最大可通过电流不要小于单片机电路的所需电流。如果三极管仅作为单片机供电的开关,由于STC89系列单片机的正常丁作模式功耗为2~7 mA,90系列三极管通常情况下可以满足需求。但在某些情况下,单片机的串口上电后会给单片机供电,使单片机各引脚电平处于不确定的状态,因而必须对目标电路板整体进行冷启动,三极管必须满足目标电路板的总电流需求。由于三极管8550的最大可通过电流为1.5 A,可以满足绝大多数电路的供电需求。所以选择三极管8550连接到目标单片机STC89C52RC的VCC脚,作为对其冷启动的开关。
如图1所示,D1为指示灯,其亮灭可以通过STC15F104E的P3.3脚控制。在程序中加入相应的语句即可实现灯的亮灭与闪烁,以显示系统的状态。
3 系统软件设计
STC单片机自动下载系统软件流程如图2所示。在初始化后,系统循环检测是否接收到下载信号;经过判断证实接收到下载信号后,就切断目标单片机电源;等待适当的时间后,再给目标单片机上电。单片机正常工作期间,系统接收到发往目标单片机串口的非下载命令程序,经自动判断后不作任何动作。
3.1 串口模拟程序
由于STC15F104E没有串口,因而必须利用定时器模拟串口。其方法是,定义一个常量,根据所需要的波特率对该常量赋值,并将该常量值赋到定时所用的寄存器中。在模拟外部晶振为11.059 2 MHz、波特率为9 600 bps的情况下,设置常量BAUD为0xFE80,并将该常量赋值到TL1、TH1两个寄存器中,实现定时。每到相应时间触发定时中断程序,将外部引脚的状态读入并存入预先设定的数组中,完成模拟串口读入字节的任务。
3.2 下载命令检测程序
在STC上位机软件发出的下载命令中,波特率为9 600 bps时数据流为连续的0x80。由于在单片机正常工作时也有可能接收0x
STC15F104E STC单片机 相关文章:
- 基于STC单片机的智能LED路灯控制器设计(03-23)
- 基于STC单片机的硬件电路设计(10-13)
- 单片机典型案例开发(四)(03-26)
- 单片机控制LED轮廓显示原理及总体方案设计(05-12)
- 基于STC单片机的超声波清洗机设计方案(08-05)
- LT3751如何使高压电容器充电变得简单(08-12)